Log in

Studying the excited electronic states of guanine rich DNA quadruples by quantum mechanical methods: main achievements and perspectives

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The main insights into the photoactivated dynamics of guanine quadruplexes (G4s) recently provided by quantum mechanical computations are concisely reviewed here. The experimental steady state absorption and circular dichroism spectra of different topologies can be reproduced and assigned. After light absorption from excited states delocalized over multiple bases, the most important decay pathways involve localization of the excitation over a single base or on two stacked guanines, excimers with different degrees of charge transfer character. Two main photochemical reactions are discussed. One involves the photodimerization of two stacked guanine bases on the ‘neutral’ excimer path. The other, ionization of guanine, which triggers deprotonation of the resulting cation to form (G-H2) and (G-H1) radicals. Both the static and dynamical properties of G4 excited states are ruled by their topology and modulated by the inner coordinated metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. H. J. Lipps and D. Rhodes, Trends Cell Biol., 2009, 19, 414.

    CAS  PubMed  Google Scholar 

  2. D. Sen and W. Gilbert, Nature, 1988, 334, 364–366.

    CAS  PubMed  Google Scholar 

  3. S. Neidle and S. Balasubramanian, Quadruplex Nucleic Acids, 2006.

  4. D. Yang and C. Lin, G-Quadruplex Nucleic Acids: Methods and Protocols, Humana, New York, NY, 2019.

  5. J. T. Davis, Angew. Chem., Int. Ed., 2004, 43, 668–698.

    CAS  Google Scholar 

  6. I. Bang, Biochem. Z., 1910, 26, 293–311.

    CAS  Google Scholar 

  7. G. Biffi, D. Tannahill, J. McCafferty and S. Balasubramanian, Nat. Chem., 2013, 5, 182.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. R. Hänsel-Hertsch, M. Di Antonio and S. Balasubramanian, Nat. Rev. Mol. Cell Biol., 2017, 18, 279–284.

    PubMed  Google Scholar 

  9. S. Neidle, J. Med. Chem., 2016, 59, 5987–6011.

    CAS  PubMed  Google Scholar 

  10. P. Martinez and M. A. Blasco, J. Cell Biol., 2017, 216, 875.

  11. J. Zhang, L.-L. Wang, M.-F. Hou, L.-P. Luo, Y.-J. Liao, Y.-K. **a, A. Yan, Y.-P. Weng, L.-P. Zeng and J.-H. Chen, Biosens. Bioelectron., 2018, 118, 1–8.

    PubMed  Google Scholar 

  12. L. A. Yatsunyk, O. Mendoza and J. L. Mergny, Acc. Chem. Res., 2014, 47, 1836–1844.

    CAS  PubMed  Google Scholar 

  13. F. Pu, L. Wu, X. Ran, J. S. Ren and X. G. Qu, Angew. Chem., Int. Ed., 2015, 54, 892–896.

    CAS  Google Scholar 

  14. M. Freeley, A. Attanzio, A. Cecconello, G. Amoroso, P. Clement, G. Fernandez, F. Gesuele and M. Palma, Adv. Sci., 2018, 5, 7.

    Google Scholar 

  15. G. I. Livshits, A. Stern, D. Rotem, N. Borovok, G. Eidelshtein, A. Migliore, E. Penzo, S. J. Wind, R. Di Felice, S. S. Skourtis, J. C. Cuevas, L. Gurevich, A. B. Kotlyar and D. Porath, Nat. Nanotechnol., 2014, 9, 1040.

    CAS  PubMed  Google Scholar 

  16. J.-L. Mergny and D. Sen, Chem. Rev., 2019, 119, 6290–6325.

    CAS  PubMed  Google Scholar 

  17. J. Cadet, T. Douki and J. L. Ravanat, Acc. Chem. Res., 2008, 41, 1075–1083.

    CAS  PubMed  Google Scholar 

  18. P. Rochette and D. Brash, PLoS Genet., 2010, 6, e1000926.

  19. E. Fouquerel, J. Lormand, A. Bose, H. T. Lee, G. S. Kim, J. Li, R. W. Sobol, B. D. Freudenthal, S. Myong and P. L. Opresko, Nat. Struct. Mol. Biol., 2016, 23, 1092.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. E. D. A. Stemp, M. R. Arkin and J. K. Barton, J. Am. Chem. Soc., 1997, 119, 2921.

    CAS  Google Scholar 

  21. J. Choi, J. Park, A. Tanaka, M. J. Park, Y. J. Jang, M. Fujitsuka, S. K. Kim and T. Majima, Angew. Chem., Int. Ed., 2013, 52, 1134.

    CAS  Google Scholar 

  22. A. M. Fleming and C. J. Burrows, Chem. Res. Toxicol., 2013, 26, 593.

  23. L. Wu, K. Liu, J. Jie, D. Song and H. Su, J. Am. Chem. Soc., 2015, 137, 259.

  24. A. Virgilio, V. Esposito, L. Mayol, C. Giancola, L. Petraccone and A. Galeone, Org. Biomol. Chem., 2015, 13, 7421.

  25. A. Banyasz, L. Martínez-Fernández, C. Balty, M. Perron, T. Douki, R. Improta and D. Markovitsi, J. Am. Chem. Soc., 2017, 139, 10561.

    CAS  PubMed  Google Scholar 

  26. A. Banyasz, E. Balanikas, L. Martinez-Fernandez, G. Baldacchino, T. Douki, R. Improta and D. Markovitsi, J. Phys. Chem. B, 2019, 123, 4950–4957.

  27. L. Martínez-Fernández, P. Changenet, A. Banyasz, T. Gustavsson, D. Markovitsi and R. Improta, J. Phys. Chem. Lett., 2019, 10, 6873–6877.

    PubMed  Google Scholar 

  28. B. Behmand, E. Balanikas, L. Martinez-Fernandez, R. Improta, A. Banyasz, G. Baldacchino and D. Markovitsi, J. Phys. Chem. Lett., 2020, 11, 1305–1309.

    CAS  PubMed  Google Scholar 

  29. F.-A. Miannay, A. Banyasz, T. Gustavsson and D. Markovitsi, J. Phys. Chem. C, 2009, 113, 11760–11765.

  30. P. Changenet-Barret, Y. Hua and D. Markovitsi, Top. Curr. Chem., 2014, 356, 183.

    Google Scholar 

  31. D. Markovitsi, T. Gustavsson and A. Sharonov, Photochem. Photobiol., 2004, 79, 526–530.

  32. Y. Hua, P. Changenet-Barret, T. Gustavsson and D. Markovitsi, Phys. Chem. Chem. Phys., 2013, 15, 7396.

    CAS  PubMed  Google Scholar 

  33. P. Changenet-Barret, E. Emanuele, T. Gustavsson, R. Improta, A. B. Kotlyar, D. Markovitsi, I. Vayá, K. Zakrzewska and D. Zikich, J. Phys. Chem. C, 2010, 114, 14339–14346.

  34. P. Changenet-Barret, Y. Hua, T. Gustavsson and D. Markovitsi, Photochem. Photobiol., 2015, 91, 759.

  35. Y. Hua, P. Changenet-Barret, R. Improta, I. Vayá, T. Gustavsson, A. B. Kotlyar, D. Zikich, P. Šket, J. Plavec and D. Markovitsi, J. Phys. Chem. C, 2012, 116, 14682.

  36. R. Improta, F. Santoro and L. Blancafort, Chem. Rev., 2016, 116, 3540.

    CAS  PubMed  Google Scholar 

  37. V. Karunakaran, K. Kleinermanns, R. Improta and S. A. Kovalenko, J. Am. Chem. Soc., 2009, 131, 5839.

    CAS  PubMed  Google Scholar 

  38. F.-A. Miannay, T. Gustavsson, A. Banyasz and D. Markovitsi, J. Phys. Chem. A, 2010, 114, 3256–3263.

  39. F. Rosu, V. Gabelica, E. De Pauw, R. Antoine, M. Broyer and P. Dugourd, J. Phys. Chem. A, 2012, 116, 5383–5391.

  40. E. Emanuele, K. Zakrzewska, D. Markovitsi, R. Lavery and P. Millié, J. Phys. Chem. B, 2005, 109, 16109–16118.

  41. B. Bouvier, J.-P. Dognon, R. Lavery, D. Markovitsi, P. Millié, D. Onidas and K. Zakrzewska, J. Phys. Chem. B, 2003, 107, 13512–13522.

  42. R. Improta, Chem. – Eur. J., 2014, 20, 8106.

    CAS  PubMed  Google Scholar 

  43. L. Martínez-Fernández, A. Banyasz, D. Markovitsi and R. Improta, Chem. – Eur.J., 2018, 24, 15185.

    PubMed  Google Scholar 

  44. C. J. Lech, A. T. Phan, M.-E. Michel-Beyerle and A. A. Voityuk, J. Phys. Chem. B, 2015, 119, 3697–3705.

  45. M. Vorlíčková, I. Kejnovská, J. Sagi, D. Renčiuk, K. Bednářová, J. Motlová and J. Kypr, Methods, 2012, 57, 64–75.

  46. R. del Villar-Guerra, J. O. Trent and J. B. Chaires, Angew. Chem., Int. Ed., 2018, 57, 7171–7175.

    Google Scholar 

  47. A. I. Karsisiotis, N. M. A. Hessari, E. Novellino, G. P. Spada, A. Randazzo and M. Webba da Silva, Angew. Chem., Int. Ed., 2011, 50, 10645–10648.

    CAS  Google Scholar 

  48. A. Randazzo, G. P. Spada and M. W. da Silva, Top. Curr. Chem., 2013, 330, 67–86.

    CAS  PubMed  Google Scholar 

  49. S. Masiero, R. Trotta, S. Pieraccini, S. De Tito, R. Perone, A. Randazzo and G. P. Spada, Org. Biomol. Chem., 2010, 8, 2683–2692.

    CAS  PubMed  Google Scholar 

  50. D. Loco, S. Jurinovich, L. D. Bari and B. Mennucci, Phys. Chem. Chem. Phys., 2016, 18, 866–877.

    CAS  PubMed  Google Scholar 

  51. D. Padula, S. Jurinovich, L. Di Bari and B. Mennucci, Chem. – Eur. J., 2016, 22, 17011–17019.

    CAS  PubMed  Google Scholar 

  52. S. Jurinovich, L. Cupellini, C. A. Guido and B. Mennucci, J. Comput. Chem., 2018, 39, 279–286.

    CAS  PubMed  Google Scholar 

  53. H. Gattuso, A. Spinello, A. Terenzi, X. Assfeld, G. Barone and A. Monari, J. Phys. Chem. B, 2016, 120, 3113–3121.

  54. M. Marazzi, H. Gattuso, A. Monari and X. Assfeld, Front. Chem., 2018, 6, 86.

    PubMed  PubMed Central  Google Scholar 

  55. M. Deiana, B. Mettra, L. Martinez-Fernandez, L. M. Mazur, K. Pawlik, C. Andraud, M. Samoc, R. Improta, C. Monnereau and K. Matczyszyn, J. Phys. Chem. Lett., 2017, 8, 5915–5920.

    CAS  PubMed  Google Scholar 

  56. C. S. Ma, R. C. T. Chan, C. T. L. Chan, A. K. W. Wong and W. M. Kwok, J. Phys. Chem. Lett., 2019, 10, 7577–7585.

    CAS  PubMed  Google Scholar 

  57. M. Zuffo, A. Gandolfini, B. Heddi and A. Granzhan, bioRxiv, 2020, DOI: 10.1101/2020.01.15.907501.

  58. M. E. Sherlock, C. A. Rumble, C. K. Kwok, J. Breffke, M. Maroncelli and P. C. Bevilacqua, J. Phys. Chem. B, 2016, 120, 5146–5158.

  59. D. Onidas, D. Markovitsi, S. Marguet, A. Sharonov and T. Gustavsson, J. Phys. Chem. B, 2002, 106, 11367.

    CAS  Google Scholar 

  60. W. Lee and S. Matsika, Phys. Chem. Chem. Phys., 2017, 19, 3325–3336.

    CAS  PubMed  Google Scholar 

  61. J. Cadet, A. Grand and T. Douki, in Photoinduced Phenomena in Nucleic Acids II: DNA Fragments and Phenomenological Aspects, ed. M. Barbatti, A. C. Borin and S. Ullrich, Springer International Publishing, Cham, 2015, pp. 249–275, DOI: 10.1007/128_2014_553.

  62. D. G. T. Su, H. Fang, M. L. Gross and J.-S. A. Taylor, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 12861–12866.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. J. E. Smith, C. Lu and J.-S. Taylor, Nucleic Acids Res., 2014, 42, 5007–5019.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. L. P. Candeias and S. Steenken, J. Am. Chem. Soc., 1989, 111, 1094–1099.

    CAS  Google Scholar 

  65. L. Martínez Fernández, J. Cerezo, H. Asha, F. Santoro, S. Coriani and R. Improta, ChemPhotoChem, 2019, 3, 846–855.

  66. A. Banyasz, T. Ketola, L. Martínez-Fernández, R. Improta and D. Markovitsi, Faraday Discuss., 2018, 207, 181–197.

    CAS  PubMed  Google Scholar 

  67. A. Banyasz, L. Martínez-Fernández, R. Improta, T. M. Ketola, C. Balty and D. Markovitsi, Phys. Chem. Chem. Phys., 2018, 20, 21381–21389.

    CAS  PubMed  Google Scholar 

  68. M. Gomez-Mendoza, A. Banyasz, T. Douki, D. Markovitsi and J.-L. Ravanat, J. Phys. Chem. Lett., 2016, 7, 3945–3948.

    CAS  PubMed  Google Scholar 

  69. A. Banyasz, T. M. Ketola, A. Muñoz-Losa, S. Rishi, A. Adhikary, M. D. Sevilla, L. Martinez-Fernandez, R. Improta and D. Markovitsi, J. Phys. Chem. Lett., 2016, 7, 3949–3953.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. R. Improta and V. Barone, Angew. Chem., Int. Ed., 2011, 50, 12016.

    CAS  Google Scholar 

  71. R. Improta, J. Phys. Chem. B, 2012, 116, 14261–14274.

  72. F. Santoro, V. Barone, A. Lami and R. Improta, Phys. Chem. Chem. Phys., 2010, 12, 4934–4948.

    CAS  PubMed  Google Scholar 

  73. F. Di Meo, M. N. Pedersen, J. Rubio-Magnieto, M. Surin, M. Linares and P. Norman, J. Phys. Chem. Lett., 2015, 6, 355–359.

    PubMed  Google Scholar 

  74. P. Norman, J. Parello, P. L. Polavarapu and M. Linares, Phys. Chem. Chem. Phys., 2015, 17, 21866–21879.

    CAS  PubMed  Google Scholar 

  75. M. S. Nørby, C. Steinmann, J. M. H. Olsen, H. Li and J. Kongsted, J. Chem. Theory Comput., 2016, 12, 5050–5057.

    PubMed  Google Scholar 

  76. L. Martínez-Fernández, Y. Zhang, K. de La Harpe, A. A. Beckstead, B. Kohler and R. Improta, Phys. Chem. Chem. Phys., 2016, 18, 21241–21245.

    PubMed  Google Scholar 

  77. Y. Zhang, K. de La Harpe, A. A. Beckstead, R. Improta and B. Kohler, J. Am. Chem. Soc., 2015, 137, 7059–7062.

    CAS  PubMed  Google Scholar 

  78. Y. Zhang, J. Dood, A. A. Beckstead, X.-B. Li, K. V. Nguyen, C. J. Burrows, R. Improta and B. Kohler, Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 11612–11617.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. A. K. Thazhathveetil, M. A. Harris, R. M. Young, M. R. Wasielewski and F. D. Lewis, J. Am. Chem. Soc., 2017, 139, 1730.

    CAS  PubMed  Google Scholar 

  80. F. D. Lewis, R. M. Young and M. R. Wasielewski, Acc. Chem. Res., 2018, 51, 1746–1754.

    CAS  PubMed  Google Scholar 

  81. J. Wu, Z. Meng, Y. Lu and F. Shao, Chem. – Eur. J., 2017, 23, 13980–13985.

    CAS  PubMed  Google Scholar 

  82. B. Islam, M. Sgobba, C. Laughton, M. Orozco, J. Sponer, S. Neidle and S. Haider, Nucleic Acids Res., 2013, 41, 2723.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. M. Havrila, P. Stadlbauer, B. Islam, M. Otyepka and J. Sponer, J. Chem. Theory Comput., 2017, 13, 3911.

    CAS  PubMed  Google Scholar 

  84. B. Islam, P. Stadlbauer, A. Gil-Ley, G. Perez-Hernandez, S. Haider, S. Neidle, G. Bussi, P. Banas, M. Otyepka and J. Sponer, J. Chem. Theory Comput., 2017, 13, 2458.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. B. Islam, P. Stadlbauer, M. Krepl, M. Havrila, S. Haider and J. Sponer, J. Chem. Theory Comput., 2018, 14, 5011–5026.

    CAS  PubMed  Google Scholar 

  86. L. Martínez-Fernández and R. Improta, Photochem. Photobiol. Sci., 2017, 16, 1277–1283.

    PubMed  Google Scholar 

  87. S. N. Bose, S. Kumar, R. J. Davies, S. K. Sethi and J. A. McCloskey, Nucleic Acids Res., 1984, 12, 7929–7947.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. R. J. H. Davies, J. F. Malone, Y. Gan, C. J. Cardin, M. P. H. Lee and S. Neidle, Nucleic Acids Res., 2007, 35, 1048–1053.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Improta.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/d0pp00065e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Fernández, L., Esposito, L. & Improta, R. Studying the excited electronic states of guanine rich DNA quadruples by quantum mechanical methods: main achievements and perspectives. Photochem Photobiol Sci 19, 436–444 (2020). https://doi.org/10.1039/d0pp00065e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/d0pp00065e

Navigation