Log in

Exploration of photophysics of 2,2’-pyridil at room temperature and 77 K: a combined spectroscopic and quantum chemical approach

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photophysics of 2,2’-pyridil has been explored thoroughly using steady state and time resolved fluorometric techniques at room temperature (RT) in liquid media as well as in glassy matrices at cryogenic temperature (77 K). Ethanol and methylcyclohexane are exploited for this purpose, as polar and non-polar media respectively. Notwithstanding the observation of multiple emissions from the fluorophore, the experiments unequivocally rule out emission from excited singlet states other than the S1 state, consistent with Kasha’s rule. Among 1,2-dicarbonyl molecular systems, this behavior resembles that of a-furil, while it contradicts that of benzil and a-naphthil which exhibit S2 emissions. The dual fluorescence and dual phosphorescence of the fluorophore are ascribed to the emissions originating from the two conformers, namely near-trans and relaxed skew. Coexistence of the two conformers is substantiated by time resolved area normalized emission spectroscopy (TRANES) at both RT and 77 K. The potential energy curves (PECs) simulated from calculations based on density functional theory and its time dependent extension provide adequate support to the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Arnett and S. P. McGlynn, Photorotamerism of aromatic a-dicarbonyls, J. Phys. Chem., 1975, 79, 626–629.

    Article  CAS  Google Scholar 

  2. N. J. Leonard and P. M. Mader, The influences of steric configuration on the ultraviolet absorption of 1,2-diketones, J. Am. Chem. Soc., 1950, 72, 5388–5397.

    Article  CAS  Google Scholar 

  3. S. C. Bera R. Mukherjee and M. Chowdhury, Spectra of benzil, J. Chem. Phys., 1969, 51, 754–761.

    Article  CAS  Google Scholar 

  4. D. J. Morantz and A. J. C. Wright, Structures of the excited states of benzil and related dicarbonyl molecules, J. Chem. Phys., 1971, 54, 692–697.

    Article  CAS  Google Scholar 

  5. N. J. Leonard and E. R. Blout, The ultraviolet absorption spectra of hindered benzils, J. Am. Chem. Soc., 1950, 72, 484–487.

    Article  CAS  Google Scholar 

  6. D. S. Roy K. Bhattacharyya S. C. Bera and M. Chowdhury, Conformational relaxation in the excited electronic states of benzil and naphthyl, Chem. Phys. Lett., 1980, 69, 134–140.

    Article  CAS  Google Scholar 

  7. R. Debnath and S. C. Bera, Emission spectra of a-naphthil, J. Phys. Chem., 1980, 84, 2623–2626.

    Article  CAS  Google Scholar 

  8. A. K. Singh and D. K. Palit, Excited-state dynamics and photophysics of 2,2’-furil, Chem. Phys. Lett., 2002, 357, 173–180.

    Article  CAS  Google Scholar 

  9. S. C. Bera B. Karmakar and M. Chowdhury, Molecular conformation and spectra of mesitil, Chem. Phys. Lett., 1974, 27, 397–400.

    Article  CAS  Google Scholar 

  10. S. C. Biswas and R. K. Sen, Molecular configuration of mesitil, Chem. Phys. Lett., 1983, 94, 415–416.

    Article  CAS  Google Scholar 

  11. A. K. Singh D. K. Palit and J. P. Mittal, Conformational relaxation dynamics in the excited electronic states of benzil in solution, Chem. Phys. Lett., 2002, 360, 443–452.

    Article  CAS  Google Scholar 

  12. A. Chakarabarty P. Purkayastha and N. Chattopadhyay, Laser induced optoacoustic spectroscopy of benzil: Evaluation of structural volume change upon photoisomerization, J. Photochem. Photobiol., A, 2008, 198, 256–261.

    Article  CAS  Google Scholar 

  13. D. Sarkar A. Chakrabarty and N. Chattopadhyay, Structural volume change upon photoisomerization of 2,2’-furil: A photoacoustic calorimetric study, Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem., 2009, 48, 45–50.

    Google Scholar 

  14. S. Lopes A. G. Zavaglia L. Lapinski N. Chattopadhyay and R. Fausto, Matrix-isolation FTIR spectroscopy of benzil: Probing the flexibility of the C-C torsional coordinate, J. Phys. Chem. A, 2004, 108, 8256–8263.

    Article  CAS  Google Scholar 

  15. W. G. Herkstroeter J. Saltiel and G. S. Hammond, Stereoisomeric triplet states of an a-diketone, J. Am. Chem. Soc., 1963, 85, 482–483.

    Article  CAS  Google Scholar 

  16. B. Bhattacharya B. Jana D. Bose and N. Chattopadhyay, Multiple emissions of benzil at room temperature and 77 K and their assignments from ab-initio quantum chemical calculations, J. Chem. Phys., 2011, 134, 044535.

    Article  PubMed  CAS  Google Scholar 

  17. B. Jana and N. Chattopadhyay, Multiple emissions of a-naphthil: Fluorescence from S2 state, J. Phys. Chem. A, 2012, 116, 7836–7841.

    Article  CAS  PubMed  Google Scholar 

  18. P. Kundu and N. Chattopadhyay, Photophysics of a-furil at room temperature and 77 K: Spectroscopic and quantum chemical studies, J. Chem. Phys., 2016, 144, 234317.

    Article  PubMed  CAS  Google Scholar 

  19. M. Hatanaka C. Nishizawa T. Kakinoki K. Takahashi S. Nakamura and T. Mashino, 2,2’-Pyridoin derivatives protect HL-60 cells against oxidative stress, Bioorg. Med. Chem. Lett., 2008, 18, 5290–5293.

    Article  CAS  PubMed  Google Scholar 

  20. J. L. Hyatt V. Stacy R. M. Wadkins K. J. P. Yoon M. Wierdl C. C. Edwards M. Zeller A. D. Hunter M. K. Danks G. Crundwell and P. M. Potter, Inhibition of carboxylesterases by benzil (diphenylethane-1,2-dione) and heterocyclic analogues is dependent upon the aromaticity of the ring and the flexibility of the dione moiety, J. Med. Chem., 2005, 48, 5543–5550.

    Article  CAS  PubMed  Google Scholar 

  21. S. Hirokawa and T. Ashida, Thecrystal structure of 2,2’-pyridil, Acta Crystallogr., 1961, 14, 774–779.

    Article  CAS  Google Scholar 

  22. T. Ashida, The crystal structure of 2,2’-pyridil, a refinement, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1970, 26, 454–456.

    Article  CAS  Google Scholar 

  23. J. Barassin, Ann. Chim. (Paris), 1963, 8, 637–666.

    CAS  Google Scholar 

  24. I. Bernal, Molecular configuration of benzil and a-pyridil, Nature, 1963, 200, 1318.

    Article  CAS  Google Scholar 

  25. P. Migchels G. Maes Th. Zeegers-Huyskens and M. Rospenk, Infrared and ultraviolet investigation of the conformation and proton acceptor ability of 2,2’-pyridil, J. Mol. Struct., 1989, 193, 223–231.

    Article  CAS  Google Scholar 

  26. R. J. W. Le Fevre and P. J. Stiles, Molecular polarisibility. The conformations of pyridine-2-aldehyde, 2-acetylpyridine, and a-pyridil as solutes in benzene, J. Chem. Soc., 1966, 420–422.

    Google Scholar 

  27. H. Inone and K. Nagaya, Hydrogen bonding and conformational change of 2,2’-pyridil in polyhydric solvents, J. Chem. Soc., Perkin Trans. 2, 1983, 1581–1583.

    Google Scholar 

  28. A. Sarkar and S. Chakravorti, Photo-rotamerism of 2,2’-pyridil in different environments: A guest for geometry in excited states, J. Lumin., 1996, 69, 161–168.

    Article  CAS  Google Scholar 

  29. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, 3rd edn, 2006

    Book  Google Scholar 

  30. A. S. R. Koti and N. Periasamy, Application of time resolved area normalized emission spectroscopy to multicomponent systems, J. Chem. Phys., 2001, 115, 7094–7099.

    Article  CAS  Google Scholar 

  31. A. S. R. Koti M. M. G. Krishna and N. Periasamy, Time-resolved area-normalized emission spectroscopy (TRANES): A novel method for confirming emission from two excited states, J. Phys. Chem. A, 2001, 105, 1767–1771.

    Article  CAS  Google Scholar 

  32. N. Periasamy and A. S. R. Koti, Time resolved fluorescence spectroscopy: TRES and TRANES, Proc. Indian Natl. Sci. Acad., Part A, 2003, 69, 41–48.

    Google Scholar 

  33. D. Ghosh and N. Chattopadhyay, Characterization of the excimers of poly(N-vinylcarbazole) using TRANES, J. Lumin., 2011, 131, 2207–2211.

    Article  CAS  Google Scholar 

  34. N. Chattopadhyay C. Serpa L. G. Arnaut and S. J. Formosinho, Coexistence of two triplets for the TICT probe DMABN in polar solvents: An experimental evidence, Helv. Chim. Acta, 2002, 85, 19–26.

    Article  CAS  Google Scholar 

  35. P. Hohenburg and W. Kohn, Inhomogeneous electron gas, Phys. Rev., 1964, 136, B864–B871.

    Article  Google Scholar 

  36. R. Bauernschmitt and R. Ahlrichs, Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory, Chem. Phys. Lett., 1996, 256, 454–464.

    Article  CAS  Google Scholar 

  37. R. E. Stratmann G. E. Scuseria and M. J. Frisch, An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules, J. Chem. Phys., 1998, 109, 8218–8224.

    Article  CAS  Google Scholar 

  38. A. Dreuw and M. Head-Gordon, Single-reference ab initio methods for the calculation of excited states of large molecules, Chem. Rev., 2005, 105, 4009–4037.

    Article  CAS  PubMed  Google Scholar 

  39. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2009

    Google Scholar 

  40. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648–5652.

    Article  CAS  Google Scholar 

  41. C. Lee W. Yang and R. G. Parr, Development of the colle-salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 1988, 37, 785–789.

    CAS  Google Scholar 

  42. T. Yanai D. P. Tew and N. C. Handy, A new hybrid exchange-correlation functional using the coulomb-attenuating method (CAM-B3LYP), Chem. Phys. Lett., 2004, 393, 51–57.

    Article  CAS  Google Scholar 

  43. R. Krishnan J. S. Binkley R. Seeger and J. A. Pople, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys., 1980, 72, 650–654.

    Article  CAS  Google Scholar 

  44. T. Yanai R. J. Harrison and N. C. Handy, Multiresolution quantum chemistry in multiwavelet bases: Time-dependent density functional theory with asymptotically corrected potentials in local density and generalized gradient approximations, Mol. Phys., 2005, 103, 413–424.

    Article  CAS  Google Scholar 

  45. M. J. G. Peach T. Helgaker P. Salek T. W. Keal O. B. Lutnæs D. J. Tozer and N. C. Handy, Assessment of a coulomb-attenuated exchange-correlation energy functional, Phys. Chem. Chem. Phys., 2006, 8, 558–562.

    Article  CAS  PubMed  Google Scholar 

  46. M. Cossi N. Rega G. Scalmani and V. Barone, Energies, structures, and electronic properties of molecules in solution with the CPCM solvation model, J. Comput. Chem., 2003, 24, 669–681.

    Article  CAS  PubMed  Google Scholar 

  47. Y. Takano and K. N. Houk, Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules, J. Chem. Theory Comput., 2005, 1, 70–77.

    Article  PubMed  CAS  Google Scholar 

  48. P. Purkayastha and N. Chattopadhyay, Role of rotamerisation and excited state intramolecular proton transfer in the photophysics of 2-(2’-hydroxyphenyl)benzoxazole, 2-(2’-hydroxyphenyl)benzimidazole and 2-(2’-hydroxyphenyl) benzothiazole: A theoretical study, Phys. Chem. Chem. Phys., 2000, 2, 203–210.

    Article  CAS  Google Scholar 

  49. P. Purkayastha and N. Chattopadhyay, Theoretical modeling for the ground state rotamerisation and excited state intramolecular proton transfer of 2-(2’-hydroxyphenyl) oxazole, 2-(2’-hydroxyphenyl)imidazole, 2-(2’-hydroxyphenyl)thiazole and their benzo analogues, Int. J. Mol. Sci., 2003, 4, 335–361.

    Article  CAS  Google Scholar 

  50. L. Serrano-Andres M. Merchan B. J. Roos and R. Lindh, Theoretical study of the internal charge transfer in aminobenzonitriles, J. Am. Chem. Soc., 1995, 117, 3189–3204.

    Article  CAS  Google Scholar 

  51. C. J. Jamorskia and H. P. Luthi, Rational classification of a series of aromatic donor-acceptor systems within the twisting intramolecular charge transfer model, a time-dependent density-functional theory investigation, J. Chem. Phys., 2003, 119, 12852–12865.

    Article  CAS  Google Scholar 

  52. L. Gagliardi G. Orlandi F. Bernardi A. Cembran and M. A. Garavelli, Theoretical study of the lowest electronic states of azobenzene: The role of torsion coordinate in the cis-trans photoisomerization, Theor. Chem. Acc., 2004, 111, 363–372.

    Article  CAS  Google Scholar 

  53. S. K. Sarkar S. K. Ghoshal and G. S. Kastha, Effect of ring aza substitution on the luminescence of aromatic ketones. Luminescence of isomeric acetylpyridines, Proc. Indian Acad. Sci., 1983, 92, 47–58.

    CAS  Google Scholar 

  54. H. H. Jaffe and M. Orchin, Theory and applications of ultraviolet spectroscopy, John Wiley and Sons, New York, 1964

    Google Scholar 

  55. S. C. Bera R. K. Mukherjee D. Mukherjee and M. Chowdhury, n?p* Transition of 2,2’-pyridil, J. Chem. Phys., 1971, 55, 5826–5828.

    Article  CAS  Google Scholar 

  56. D. R. Kearns and W. A. Case, Investigation of singlet?triplet transitions by the phosphorescence excitation method. III. Aromatic ketones and aldehydes, J. Am. Chem. Soc., 1966, 88, 5087–5097.

    Article  CAS  Google Scholar 

  57. D. A. Warwick and C. H. J. Wells, Perturbation of singlet-triplet transitions in aromatic carbonyl compounds, Spectrochim. Acta, 1968, 24, 589–593.

    Article  CAS  Google Scholar 

  58. F. Grieser M. Lay and P. J. Thistlethwaite, Excited state torsional relaxation in 1,1’-dihexyl-3,3,3’,3’-tetraethylindocarbocyanine iodide: Application to the probing of micelle structure, J. Phys. Chem., 1985, 89, 2065–2070.

    Article  CAS  Google Scholar 

  59. R. O. Loutfy and B. A. Arnold, Effect of viscosity and temperature on torsional relaxation of molecular rotors, J. Phys. Chem., 1982, 86, 4205–4211.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Chattopadhyay.

Additional information

Electronic supplementary information (ESI) available: Fluorescence excitation spectra of 2,2’-pyridil monitored at different wavelengths over the entire emission band in both EtOH and MCH solvents upon photoexcitation at the np* absorption band, room temperature emission and excitation spectra of 2,2’-pyridil in ethanol at different time windows, the phosphorescence decays of 2,2’-pyridil in EtOH and MCH frozen matrices at various monitoring wavelengths at 77 K upon photoexcitation at np* and pp* absorption bands, potential energy curves of different electronic states (S0, S1, S2, S3 and T1) of 2,2’-pyridil in vacuum, table collecting the relevant phosphorescence lifetime data and table collecting experimental and calculated absorption wavelengths in EtOH and MCH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, P., Ghosh, S. & Chattopadhyay, N. Exploration of photophysics of 2,2’-pyridil at room temperature and 77 K: a combined spectroscopic and quantum chemical approach. Photochem Photobiol Sci 16, 159–169 (2017). https://doi.org/10.1039/c6pp00378h

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00378h

Navigation