Log in

Advances in viscosupplementation and tribosupplementation for early-stage osteoarthritis therapy

  • Review Article
  • Published:

From Nature Reviews Rheumatology

View current issue Sign up to alerts

Abstract

Joint kinematic instability, arising from congenital or acquired musculoskeletal pathoanatomy or from imbalances in anabolism and catabolism induced by pathophysiological factors, leads to deterioration of the composition, structure and function of cartilage and, ultimately, progression to osteoarthritis (OA). Alongside articular cartilage degeneration, synovial fluid lubricity decreases in OA owing to a reduction in the concentration and molecular weight of hyaluronic acid and surface-active mucinous glycoproteins that form a lubricating film over the articulating joint surfaces. Minimizing friction between articulating joint surfaces by lubrication is fundamental for decreasing hyaline cartilage wear and for maintaining the function of synovial joints. Augmentation with highly viscous supplements (that is, viscosupplementation) offers one approach to re-establishing the rheological and tribological properties of synovial fluid in OA. However, this approach has varied clinical outcomes owing to limited intra-articular residence time and ineffective mechanisms of chondroprotection. This Review discusses normal hyaline cartilage function and lubrication and examines the advantages and disadvantages of various strategies for restoring normal joint lubrication. These strategies include contemporary viscosupplements that contain antioxidants, anti-inflammatory drugs or platelet-rich plasma and new synthetic synovial fluid additives and cartilage matrix enhancers. Advanced biomimetic tribosupplements offer promise for mitigating cartilage wear, restoring joint function and, ultimately, improving patient care.

Key points

  • In osteoarthritis, compositional changes to the synovial fluid reduce the lubricating ability of the joint and can lead to propagation of cartilage wear.

  • Clinically approved viscosupplements are aimed at restoring synovial fluid lubricity and reducing the inflammatory response, but their efficacy remains nebulous.

  • Enhanced viscosupplements combine sodium hyaluronate with additional materials (such as glucocorticoids and antioxidants) that target specific aspects of osteoarthritis, but the benefits of these additions seem minimal.

  • Tribosupplementation, the delivery of non-hyaluronan-based lubricants to the joint, shows some promise but is largely in the preclinical stages of development; this approach includes fluid additives and matrix enhancers.

  • Fluid additives are cartilage lubricants (with a linear, hydrogel or particle structure) that remain suspended in the synovial fluid following intraarticular injection and comprise linear, hydrogel and particle structures.

  • Matrix enhancers are cartilage lubricants (with a linear, hydrogel or particle structure) that, in addition to containing a lubricious domain, contain a domain that binds to the cartilage surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1: Types of viscosupplementation and tribosupplementation.
Fig. 2: The composition, morphology and biomechanics of cartilage and synovial fluid in the healthy and osteoarthritic states.
Fig. 3: Clinical results for several clinically approved viscosupplements.
Fig. 4: Structures of various linear tribosupplements.

Similar content being viewed by others

References

  1. Long, H. et al. Prevalence trends of site-specific osteoarthritis from 1990 to 2019: findings from the Global Burden of Disease Study 2019. Arthritis Rheumatol. 74, 1172–1183 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hootman, J. M., Helmick, C. G., Barbour, K. E., Theis, K. A. & Boring, M. A. Updated projected prevalence of self-reported doctor-diagnosed arthritis and arthritis-attributable activity limitation among US adults, 2015–2040. Arthritis Rheumatol. 68, 1582–1587 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Arden, N. K. et al. Non-surgical management of knee osteoarthritis: comparison of ESCEO and OARSI 2019 guidelines. Nat. Rev. Rheumatol. 17, 59–66 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Bijlsma, J. W. J., Berenbaum, F. & Lafeber, F. P. J. G. Osteoarthritis: an update with relevance for clinical practice. Lancet 377, 2115–2126 (2011).

    Article  PubMed  Google Scholar 

  5. Sinusas, K. Osteoarthritis: diagnosis and treatment. Am. Fam. Physician 85, 49–56 (2012).

    PubMed  Google Scholar 

  6. Maudens, P., Jordan, O. & Allémann, E. Recent advances in intra-articular drug delivery systems for osteoarthritis therapy. Drug. Discov. Today 23, 1761–1775 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Balazs, E. A. & Denlinger, J. L. Viscosupplementation: a new concept in the treatment of osteoarthritis. J. Rheumatol. Suppl. 39, 3–9 (1993).

    CAS  PubMed  Google Scholar 

  8. Legré-Boyer, V. Viscosupplementation: techniques, indications, results. Orthop. Traumatol. Surg. Res. 101, S101–S108 (2015).

    Article  PubMed  Google Scholar 

  9. Venn, M. & Maroudas, A. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann. Rheum. Dis. 36, 121–129 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sophia Fox, A. J., Bedi, A. & Rodeo, S. A. The basic science of articular cartilage: structure, composition, and function. Sports Health 1, 461–468 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Carballo, C. B., Nakagawa, Y., Sekiya, I. & Rodeo, S. A. Basic science of articular cartilage. Clin. Sports Med. 36, 413–425 (2017).

    Article  PubMed  Google Scholar 

  12. Chen, S. S., Falcovitz, Y. H., Schneiderman, R., Maroudas, A. & Sah, R. L. Depth-dependent compressive properties of normal aged human femoral head articular cartilage: relationship to fixed charge density. Osteoarthritis Cartilage 9, 561–569 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Ateshian, G. A. The role of interstitial fluid pressurization in articular cartilage lubrication. J. Biomech. 42, 1163–1176 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mäkelä, J. T. A., Han, S. K., Herzog, W. & Korhonen, R. K. Very early osteoarthritis changes sensitively fluid flow properties of articular cartilage. J. Biomech. 48, 3369–3376 (2015).

    Article  PubMed  Google Scholar 

  15. Park, S., Krishnan, R., Nicoll, S. B. & Ateshian, G. A. Cartilage interstitial fluid load support in unconfined compression. J. Biomech. 36, 1785–1796 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mansour, J. M. & Mow, V. C. The permeability of articular cartilage under compressive strain and at high pressures. J. Bone Joint Surg. Am. 58, 509–516 (1976).

    Article  CAS  PubMed  Google Scholar 

  17. Krishnan, R., Kopacz, M. & Ateshian, G. A. Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication. J. Orthop. Res. 22, 565–570 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  18. McCutchen, C. W. The frictional properties of animal joints. Wear 5, 1–17 (1962).

    Article  Google Scholar 

  19. Radin, E. L., Paul, I. L., Swann, D. A. & Schottstaedt, E. S. Lubrication of synovial membrane. Ann. Rheum. Dis. 30, 322 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ateshian, G. A. & Wang, H. Rolling resistance of articular cartilage due to interstitial fluid flow. Proc. Inst. Mech. Eng. H 211, 419–424 (2016).

    Article  Google Scholar 

  21. Walker, P. S., Dowson, D., Longfield, M. D. & Wright, V. Lubrication of human joints. Ann. Rheum. Dis. 28, 194 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ludwig, T. E., Hunter, M. M. & Schmidt, T. A. Cartilage boundary lubrication synergism is mediated by hyaluronan concentration and PRG4 concentration and structure. BMC Musculoskelet. Disord. 16, 386 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bonnevie, E. D., Galesso, D., Secchieri, C., Cohen, I. & Bonassar, L. J. Elastoviscous transitions of articular cartilage reveal a mechanism of synergy between lubricin and hyaluronic acid. PLoS One 10, e0143415 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Greene, G. W. et al. Adaptive mechanically controlled lubrication mechanism found in articular joints. Proc. Natl Acad. Sci. USA 108, 5255–5259 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seror, J., Zhu, L., Goldberg, R., Day, A. J. & Klein, J. Supramolecular synergy in the boundary lubrication of synovial joints. Nat. Commun. 2015 61(6), 1–7 (2015).

    Google Scholar 

  26. Jahn, S. & Klein, J. Hydration lubrication: the macromolecular domain. Macromolecules 48, 5059–5075 (2015).

    Article  CAS  Google Scholar 

  27. Oungoulian, S. R. et al. Articular cartilage wear characterization with a particle sizing and counting analyzer. J. Biomech. Eng. 135, 024501 (2013).

    Article  PubMed  Google Scholar 

  28. Workman, J., Thambyah, A. & Broom, N. The influence of early degenerative changes on the vulnerability of articular cartilage to impact-induced injury. Clin. Biomech. 43, 40–49 (2017).

    Article  Google Scholar 

  29. Steinmeyer, J., Knue, S., Raiss, R. X. & Pelzer, I. Effects of intermittently applied cyclic loading on proteoglycan metabolism and swelling behaviour of articular cartilage explants. Osteoarthritis Cartilage 7, 155–164 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Hossain, M. J. et al. Anisotropic properties of articular cartilage in an accelerated in vitro wear test. J. Mech. Behav. Biomed. Mater. 109, 103834 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Santos, S., Emery, N., Neu, C. P. & Pierce, D. M. Propagation of microcracks in collagen networks of cartilage under mechanical loads. Osteoarthritis Cartilage 27, 1392–1402 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. McNulty, A. L., Rothfusz, N. E., Leddy, H. A. & Guilak, F. Synovial fluid concentrations and relative potency of interleukin-1 alpha and beta in cartilage and meniscus degradation. J. Orthop. Res. 31, 1039–1045 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Berg, W. B., van den, Loo, F. A., van de, Zwarts, W. A. & Otterness, I. G. Effects of murine recombinant interleukin 1 on intact homologous articular cartilage: a quantitative and autoradiographic study. Ann. Rheum. Dis. 47, 855 LP–855863 (1988).

    Article  Google Scholar 

  34. Fam, H., Bryant, J. T. & Kontopoulou, M. Rheological properties of synovial fluids. Biorheology 44, 59–74 (2007).

    CAS  PubMed  Google Scholar 

  35. Elsaid, K. A., Jay, G. D., Warman, M. L., Rhee, D. K. & Chichester, C. O. Association of articular cartilage degradation and loss of boundary-lubricating ability of synovial fluid following injury and inflammatory arthritis. Arthritis Rheum. 52, 1746–1755 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Elsaid, K. A. et al. Decreased lubricin concentrations and markers of joint inflammation in the synovial fluid of patients with anterior cruciate ligament injury. Arthritis Rheum. 58, 1707–1715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ludwig, T. E., McAllister, J. R., Lun, V., Wiley, J. P. & Schmidt, T. A. Diminished cartilage-lubricating ability of human osteoarthritic synovial fluid deficient in proteoglycan 4: restoration through proteoglycan 4 supplementation. Arthritis Rheum. 64, 3963–3971 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Watkins, A. R. & Reesink, H. L. Lubricin in experimental and naturally occurring osteoarthritis: a systematic review. Osteoarthritis Cartilage 28, 1303–1315 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bonnevie, E. D. & Bonassar, L. J. A century of cartilage tribology research is informing lubrication therapies. J. Biomech. Eng. 142, 031004 (2020).

    Article  PubMed  Google Scholar 

  40. Lin, W. & Klein, J. Recent progress in cartilage lubrication. Adv. Mater. 33, 2005513 (2021).

    Article  CAS  Google Scholar 

  41. Stribeck, R. Kugellager Für Beliebige Belastungen (Buchdruckerei AW Schade, 1901).

  42. Mori, S., Naito, M. & Moriyama, S. Highly viscous sodium hyaluronate and joint lubrication. Int. Orthop. 26, 116–121 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gleghorn, J. P. & Bonassar, L. J. Lubrication mode analysis of articular cartilage using Stribeck surfaces. J. Biomech. 41, 1910–1918 (2008).

    Article  PubMed  Google Scholar 

  44. Bonnevie, E. D., Galesso, D., Secchieri, C. & Bonassar, L. J. Frictional characterization of injectable hyaluronic acids is more predictive of clinical outcomes than traditional rheological or viscoelastic characterization. PLoS One 14, e0216702 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lewis, P. R. & McCutchen, C. W. Mechanism of animal joints: experimental evidence for wee** lubrication in mammalian joints. Nature 184, 1285 (1959).

    Article  CAS  PubMed  Google Scholar 

  46. Walker, P. S., Dowson, D., Longfield, M. D. & Wright, V. ‘Boosted lubrication’ in synovial joints by fluid entrapment and enrichment. Ann. Rheum. Dis. 27, 512–520 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hlaváček, M. Squeeze-film lubrication of the human ankle joint with synovial fluid filtrated by articular cartilage with the superficial zone worn out. J. Biomech. 33, 1415–1422 (2000).

    Article  PubMed  Google Scholar 

  48. Higginson, G. R. & Norman, R. A model investigation of squeeze-film lubrication in animal joints. Phys. Med. Biol. 19, 785 (1974).

    Article  CAS  PubMed  Google Scholar 

  49. Dowson, D. & **, Z.-M. Micro-elastohydrodynamic lubrication of synovial joints. Eng. Med. 15, 63–65 (1986).

    Article  CAS  PubMed  Google Scholar 

  50. Schmidt, T. A. & Sah, R. L. Effect of synovial fluid on boundary lubrication of articular cartilage. Osteoarthritis Cartilage 15, 35–47 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Bellamy, N. et al. Viscosupplementation for the treatment of osteoarthritis of the knee. Cochrane Database Syst. Rev. 2006, CD005321 (2006).

    PubMed  PubMed Central  Google Scholar 

  52. Gupta, R. C., Lall, R., Srivastava, A. & Sinha, A. Hyaluronic acid: molecular mechanisms and therapeutic trajectory. Front. Vet. Sci. 6, 192 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yatabe, T. et al. Hyaluronan inhibits expression of ADAMTS4 (aggrecanase-1) in human osteoarthritic chondrocytes. Ann. Rheum. Dis. 68, 1051 LP–1051058 (2009).

    Article  Google Scholar 

  54. Nelson, F. R. et al. The effects of an oral preparation containing hyaluronic acid (Oralvisc®) on obese knee osteoarthritis patients determined by pain, function, bradykinin, leptin, inflammatory cytokines, and heavy water analyses. Rheumatol. Int. 35, 43–52 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Gotoh, S. et al. Effects of the molecular weight of hyaluronic acid and its action mechanisms on experimental joint pain in rats. Ann. Rheum. Dis. 52, 817 LP–817822 (1993).

    Article  Google Scholar 

  56. Huang & Le, T. et al. Intra-articular injections of sodium hyaluronate (Hyalgan®) in osteoarthritis of the knee. A randomized, controlled, double-blind, multicenter trial in the Asian population. BMC Musculoskelet. Disord. 12, 1–8 (2011).

    Article  CAS  Google Scholar 

  57. Priano, F. Early efficacy of intra-articular HYADD® 4 (Hymovis®) injections for symptomatic knee osteoarthritis. Joints 5, 79–84 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Petterson, S. C. & Plancher, K. D. Single intra-articular injection of lightly cross-linked hyaluronic acid reduces knee pain in symptomatic knee osteoarthritis: a multicenter, double-blind, randomized, placebo-controlled trial. Knee Surgery. Sport. Traumatol. Arthrosc. 27, 1992–2002 (2019).

    Article  Google Scholar 

  59. Adams, M. E. et al. The role of viscosupplementation with hylan G-F 20 (Synvisc®) in the treatment of osteoarthritis of the knee: a Canadian multicenter trial comparing hylan G-F 20 alone, hylan G-F 20 with non-steroidal anti-inflammatory drugs (NSAIDs) and NSAIDs alone. Osteoarthritis Cartilage 3, 213–225 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Chevalier, X. et al. Single, intra-articular treatment with 6 ml hylan G-F 20 in patients with symptomatic primary osteoarthritis of the knee: a randomised, multicentre, double-blind, placebo controlled trial. Ann. Rheum. Dis. 69, 113–119 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. **n, Y. et al. The efficacy and safety of sodium hyaluronate injection (Adant®) in treating degenerative osteoarthritis: a multi-center, randomized, double-blind, positive-drug parallel-controlled and non-inferiority clinical study. Int. J. Rheum. Dis. 19, 271–278 (2016).

    Article  PubMed  Google Scholar 

  62. Gadek, A., Miśkowiec, K., Wordliczek, J. & Lekarski, H. L. Effectiveness and safety of intra-articular use of hyaluronic acid (Suplasyn) in the treatment of knee osteoarthritis. Przegl. Lek. 68, 307–310 (2011).

    PubMed  Google Scholar 

  63. Pavelka, K. & Uebelhart, D. Efficacy evaluation of highly purified intra-articular hyaluronic acid (Sinovial®) vs Hylan G-F20 (Synvisc®) in the treatment of symptomatic knee osteoarthritis. A double-blind, controlled, randomized, parallel-group non-inferiority study. Osteoarthritis Cartilage 19, 1294–1300 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Bronstone, A., Neary, J. T., Lambert, T. H. & Dasa, V. Supartz (Sodium Hyaluronate) for the treatment of knee osteoarthritis: a review of efficacy and safety. Clin. Med. Insights Arthritis Musculoskelet. Disord. 12, 1179544119835221 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Neustadt, D., Caldwell, J., Bell, M., Wade, J. & Gimbel, J. Clinical effects of intraarticular injection of high molecular weight hyaluronan (Orthovisc) in osteoarthritis of the knee: a randomized, controlled, multicenter trial. J. Rheumatol. 32, 1928–1936 (2005).

    CAS  PubMed  Google Scholar 

  66. Altman, R. D., Rosen, J. E., Bloch, D. A., Hatoum, H. T. & Korner, P. A double-blind, randomized, saline-controlled study of the efficacy and safety of EUFLEXXA® for treatment of painful osteoarthritis of the knee, with an open-label safety extension (The FLEXX Trial). Semin. Arthritis Rheum. 39, 1–9 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Strand, V., Baraf, H. S. B., Lavin, P. T., Lim, S. & Hosokawa, H. A multicenter, randomized controlled trial comparing a single intra-articular injection of Gel-200, a new cross-linked formulation of hyaluronic acid, to phosphate buffered saline for treatment of osteoarthritis of the knee. Osteoarthritis Cartilage 20, 350–356 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Altman, R. D. et al. Efficacy and safety of a single intra-articular injection of non-animal stabilized hyaluronic acid (NASHA) in patients with osteoarthritis of the knee. Osteoarthritis Cartilage 12, 642–649 (2004).

    Article  PubMed  Google Scholar 

  69. Kolasinski, S. L. et al. 2019 American College of Rheumatology/Arthritis Foundation guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis Rheumatol. 72, 220–233 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  70. American Academy of Orthopaedic Surgeons. Viscosupplementation; cannot recommend. AAOS http://www.orthoguidelines.org/guideline-detail?id=1214 (2015).

  71. Kirchner, M. & Marshall, D. A double-blind randomized controlled trial comparing alternate forms of high molecular weight hyaluronan for the treatment of osteoarthritis of the knee. Osteoarthritis Cartilage 14, 154–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Wobig, M., Dickhut, A., Maier, R. & Vetter, G. Viscosupplementation with Hylan G-F 20: a 26-week controlled trial of efficacy and safety in the osteoarthritic knee. Clin. Ther. 20, 410–423 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Shah, R. P. et al. T1Rho magnetic resonance imaging at 3t detects knee cartilage changes after viscosupplementation. Orthopedics 38, e604–e610 (2015).

    Article  PubMed  Google Scholar 

  74. Kolarz, G., Kotz, R. & Hochmayer, I. Long-term benefits and repeated treatment cycles of intra-articular sodium hyaluronate (Hyalgan) in patients with osteoarthritis of the knee. Semin. Arthritis Rheum. 32, 310–319 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Waddell, D. D. & Bricker, D. W. C. Total knee replacement delayed with Hylan G-F 20 use in patients with grade IV osteoarthritis. J. Managed Care Pharm. 13, 113–121 (2007).

    Article  Google Scholar 

  76. Rutjes, A. W. S. et al. Viscosupplementation for osteoarthritis of the knee: a systematic review and meta-analysis. Ann. Intern. Med. 157, 180–191 (2012).

    Article  PubMed  Google Scholar 

  77. Berenbaum, F. et al. A randomised, double-blind, controlled trial comparing two intra-articular hyaluronic acid preparations differing by their molecular weight in symptomatic knee osteoarthritis. Ann. Rheum. Dis. 71, 1454–1460 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Gigis, I., Fotiadis, E., Nenopoulos, A., Tsitas, K. & Hatzokos, I. Comparison of two different molecular weight intra-articular injections of hyaluronic acid for the treatment of knee osteoarthritis. Hippokratia 20, 26–31 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, Y. et al. Effects of Hylan G-F 20 supplementation on cartilage preservation detected by magnetic resonance imaging in osteoarthritis of the knee: a two-year single-blind clinical trial. BMC Musculoskelet. Disord. 12, 1–9 (2011).

    Article  Google Scholar 

  80. Kul-Panza, E. & Berker, N. Is hyaluronate sodium effective in the management of knee osteoarthritis? A placebo-controlled double-blind study. Minerva Med. 101, 63–72 (2010).

    CAS  PubMed  Google Scholar 

  81. Karlsson, J. Comparison of two hyaluronan drugs and placebo in patients with knee osteoarthritis. A controlled, randomized, double-blind, parallel-design multicentre study. Rheumatology 41, 1240–1248 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Pereira, T. V. et al. Viscosupplementation for knee osteoarthritis: systematic review and meta-analysis. Br. Med. J. 378, e069722 (2022).

    Article  Google Scholar 

  83. van der Weegen, W., Wullems, J. A., Bos, E., Noten, H. & van Drumpt, R. A. M. No difference between intra-articular injection of hyaluronic acid and placebo for mild to moderate knee osteoarthritis: a randomized, controlled, double-blind trial. J. Arthroplast. 30, 754–757 (2015).

    Article  Google Scholar 

  84. Jevsevar, D., Donnelly, P., Brown, G. A. & Cummins, D. S. Viscosupplementation for osteoarthritis of the knee: a systematic review of the evidence. J. Bone Joint Surg. Am. 97, 2047–2060 (2014).

    Article  Google Scholar 

  85. Cooper, B. G., Catalina Bordeianu, Nazarian, A., Snyder, B. D. & Grinstaff, M. W. Active agents, biomaterials, and technologies to improve biolubrication and strengthen soft tissues. Biomaterials 181, 210–226 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pontes-Quero, G. M. et al. Active viscosupplements for osteoarthritis treatment. Semin. Arthritis Rheumatism 49, 171–183 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Hohmann, E., Tetsworth, K. & Glatt, V. Is platelet-rich plasma effective for the treatment of knee osteoarthritis? A systematic review and meta-analysis of level 1 and 2 randomized controlled trials. Eur. J. Orthop. Surg. Traumatol. 30, 955–967 (2020).

    Article  PubMed  Google Scholar 

  88. Chouhan, D. K. et al. Multiple platelet-rich plasma injections versus single platelet-rich plasma injection in early osteoarthritis of the knee: an experimental study in a guinea pig model of early knee osteoarthritis. Am. J. Sports Med. 47, 2300–2307 (2019).

    Article  PubMed  Google Scholar 

  89. Yang, F. et al. Autophagy is independent of the chondroprotection induced by platelet-rich plasma releasate. Biomed. Res. Int. 2018, 9726703 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Xue, Y. et al. Pure platelet-rich plasma facilitates the repair of damaged cartilage and synovium in a rabbit hemorrhagic arthritis knee model. Arthritis Res. Ther. 22, 1–15 (2020).

    Article  Google Scholar 

  91. Sánchez, M. et al. Platelet-rich plasma injections delay the need for knee arthroplasty: a retrospective study and survival analysis. Int. Orthop. 45, 401–410 (2021).

    Article  PubMed  Google Scholar 

  92. Dallari, D. et al. Ultrasound-guided injection of platelet-rich plasma and hyaluronic acid, separately and in combination, for hip osteoarthritis. Am. J. Sports Med. 44, 664–671 (2016).

    Article  PubMed  Google Scholar 

  93. Saturveithan, C. et al. Intra-articular hyaluronic acid (HA) and platelet rich plasma (PRP) injection versus hyaluronic acid (HA) injection alone in patients with grade III and IV knee osteoarthritis (OA): a retrospective study on functional outcome. Malays. Orthop. J. 10, 35 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kon, E. et al. Platelet-rich plasma intra-articular injection versus hyaluronic acid viscosupplementation as treatments for cartilage pathology: from early degeneration to osteoarthritis. Arthrosc. J. Arthrosc. Relat. Surg. 27, 1490–1501 (2011).

    Article  Google Scholar 

  95. Cole, B. J. et al. Hyaluronic acid versus platelet-rich plasma: a prospective, double-blind randomized controlled trial comparing clinical outcomes and effects on intra-articular biology for the treatment of knee osteoarthritis. Am. J. Sports Med. 45, 339–346 (2016).

    Article  PubMed  Google Scholar 

  96. Sánchez, M. et al. A randomized clinical trial evaluating plasma rich in growth factors (PRGF-Endoret) versus hyaluronic acid in the short-term treatment of symptomatic knee osteoarthritis. Arthrosc. J. Arthrosc. Relat. Surg. 28, 1070–1078 (2012).

    Article  Google Scholar 

  97. Spaková, T., Rosocha, J., Lacko, M., Harvanová, D. & Gharaibeh, A. Treatment of knee joint osteoarthritis with autologous platelet-rich plasma in comparison with hyaluronic acid. Am. J. Phys. Med. Rehabil. 91, 411–417 (2012).

    Article  PubMed  Google Scholar 

  98. Patel, S., Dhillon, M. S., Aggarwal, S., Marwaha, N. & Jain, A. Treatment with platelet-rich plasma is more effective than placebo for knee osteoarthritis: a prospective, double-blind, randomized trial. Am. J. Sports Med. 41, 356–364 (2013).

    Article  PubMed  Google Scholar 

  99. Filardo, G. et al. Platelet-rich plasma vs hyaluronic acid to treat knee degenerative pathology: study design and preliminary results of a randomized controlled trial. BMC Musculoskelet. Disord. 13, 229 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Raynauld, J.-P. et al. Safety and efficacy of long-term intraarticular steroid injections in osteoarthritis of the knee: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 48, 370–377 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Savvidou, O. et al. Glucocorticoid signaling and osteoarthritis. Mol. Cell. Endocrinol. 480, 153–166 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Hangody, L. et al. Intraarticular injection of a cross-linked sodium hyaluronate combined with triamcinolone hexacetonide (cingal) to provide symptomatic relief of osteoarthritis of the knee: a randomized, double-blind, placebo-controlled multicenter clinical trial. Cartilage 9, 276–283 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Kaderli, S. et al. A novel oxido-viscosifying Hyaluronic Acid-antioxidant conjugate for osteoarthritis therapy: biocompatibility assessments. Eur. J. Pharm. Biopharm. 90, 70–79 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Borrás-Verdera, A., Calcedo-Bernal, V., Ojeda-Levenfeld, J. & Clavel-Sainz, C. Efficacy and safety of a single intra-articular injection of 2% hyaluronic acid plus mannitol injection in knee osteoarthritis over a 6-month period. Rev. Esp. Cir. Ortop. Ed. Traumatol. 56, 274–280 (2012).

    Google Scholar 

  105. Frobenius, K. A new high-dose treatment with intra-articular hyaluronic acid facilitates the management of osteoarthritis. shopify https://cdn.shopify.com/s/files/1/0630/0467/2149/files/Frebenius_2009_English_Only_Ostenil_Plus.pdf?v=1671531691 (2009).

  106. Lertwanich, P. & Lamsam, C. Efficacy of a single intra-articular injection of 2% sodium hyaluronate plus 0.5% mannitol in patients with symptomatic osteoarthritis of the knee: a preliminary report. J. Med. Assoc. Thai. 99, 1094–1101 (2016).

    PubMed  Google Scholar 

  107. Dernek, B. et al. Efficacy of single-dose hyaluronic acid products with two different structures in patients with early-stage knee osteoarthritis. J. Phys. Ther. Sci. 28, 3036–3040 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Maheu, E., Avouac, B., Dreiser, R. L. & Bardin, T. A single intra-articular injection of 2.0% non-chemically modified sodium hyaluronate vs 0.8% hylan G-F 20 in the treatment of symptomatic knee osteoarthritis: a 6-month, multicenter, randomized, controlled non-inferiority trial. PLoS One 14, e0226007 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Conrozier, T. et al. Safety and efficacy of intra-articular injections of a combination of hyaluronic acid and mannitol (HAnOX-M) in patients with symptomatic knee osteoarthritis: results of a double-blind, controlled, multicenter, randomized trial. Knee 23, 842–848 (2016).

    Article  PubMed  Google Scholar 

  110. Matthieu, M., Bozgan, A.-M. & Conrozier, T. Safety and efficacy of single intra-articular injection of a cross-linked hyaluronic acid/mannitol formulation (HappycrossTM) in knee osteoarthritis results of a prospective observational study in daily practice conditions. Ortho. Rheum. Open Access. J. 5, 555664 (2017).

    Google Scholar 

  111. Conrozier, T., Bossert, M., Balblanc, J., Sondag, M. & Walliser-Lohse, A. Viscosupplementation with HANOX-M-XL is effective in moderate hip osteoarthritis but is not an alternative to hip joint surgery in patients with severe disease. Results of a clinical survey in 191 patients treated in daily practice. Eur. J. Musculoskelet. Dis. 3, 49–55 (2014).

    Google Scholar 

  112. Cortet, B., Lombion, S., Naissant, B., Vidovic, E. & Bruyère, O. Non-inferiority of a single injection of sodium hyaluronate plus sorbitol to hylan G-F20: a 6-month randomized controlled trial. Adv. Ther. 38, 2271–2283 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bali, J. P., Cousse, H. & Neuzil, E. Biochemical basis of the pharmacologic action of chondroitin sulfates on the osteoarticular system. Semin. Arthritis Rheum. 31, 58–68 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Rivera, F. et al. Effectiveness of intra-articular injections of sodium hyaluronate-chondroitin sulfate in knee osteoarthritis: a multicenter prospective study. J. Orthop. Traumatol. 17, 27–33 (2016).

    Article  PubMed  Google Scholar 

  115. Vincent, P. Intra-articular hyaluronic acid in knee osteoarthritis: clinical data for a product family (ARTHRUM), with comparative meta-analyses. Curr. Ther. Res. 95, 100637 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  116. McNary, S. M., Athanasiou, K. A. & Reddi, A. H. Engineering lubrication in articular cartilage. Tissue Eng. Part. B Rev. 18, 88–100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dedinaite, A. Biomimetic lubrication. Soft Matter 8, 273–284 (2012).

    Article  CAS  Google Scholar 

  118. Chen, M., Briscoe, W. H., Armes, S. P. & Klein, J. Lubrication at physiological pressures by polyzwitterionic brushes. Science 323, 1698–1701 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Pradal, C., Yakubov, G. E., Williams, M. A. K., McGuckin, M. A. & Stokes, J. R. Lubrication by biomacromolecules: mechanisms and biomimetic strategies. Bioinspiration Biomim. 14, 51001 (2019).

    Article  CAS  Google Scholar 

  120. Schmidt, T. A., Gastelum, N. S., Nguyen, Q. T., Schumacher, B. L. & Sah, R. L. Boundary lubrication of articular cartilage: role of synovial fluid constituents. Arthritis Rheum. 56, 882–891 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Zhao, T., Wei, Z., Zhu, W. & Weng, X. Recent developments and current applications of hydrogels in osteoarthritis. Bioengineering 9, 132 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lawson, T. B., Mäkelä, J. T. A., Klein, T., Snyder, B. D. & Grinstaff, M. W. Nanotechnology and osteoarthritis. part 1: clinical landscape and opportunities for advanced diagnostics. J. Orthop. Res. 39, 465–472 (2020).

    Article  PubMed  Google Scholar 

  123. Samaroo, K. J., Tan, M., Putnam, D. & Bonassar, L. J. Binding and lubrication of biomimetic boundary lubricants on articular cartilage. J. Orthop. Res. 35, 548–557 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Wang, X.-B. & Liu, W.-M. Nanoparticle-based lubricant additives. Encycl. Tribol. 2369–2376 (2013).

  125. Chen, M., Briscoe, W. H., Armes, S. P., Cohen, H. & Klein, J. Polyzwitterionic brushes: extreme lubrication by design. Eur. Polym. J. 47, 511–523 (2011).

    Article  CAS  Google Scholar 

  126. Chen, H. et al. Cartilage matrix-inspired biomimetic superlubricated nanospheres for treatment of osteoarthritis. Biomaterials 242, 119931 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Zheng, Y. et al. Bioinspired hyaluronic acid/phosphorylcholine polymer with enhanced lubrication and anti-inflammation. Biomacromolecules 20, 4135–4142 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Gonçalves, C., Carvalho, D. N., Silva, T. H., Reis, R. L. & Oliveira, J. M. Engineering of viscosupplement biomaterials for treatment of osteoarthritis: a comprehensive review. Adv. Eng. Mater. 24, 2101541 (2022).

    Article  Google Scholar 

  129. **e, R. et al. Biomimetic cartilage-lubricating polymers regenerate cartilage in rats with early osteoarthritis. Nat. Biomed. Eng. 5, 1189–1201 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Wathier, M. et al. A synthetic polymeric biolubricant imparts chondroprotection in a rat meniscal tear model. Biomaterials 182, 13–20 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wathier, M. et al. A large-molecular-weight polyanion, synthesized via ring-opening metathesis polymerization, as a lubricant for human articular cartilage. J. Am. Chem. Soc. 135, 4930–4933 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Lakin, B. A. et al. A synthetic bottle-brush polyelectrolyte reduces friction and wear of intact and previously worn cartilage. ACS Biomater. Sci. Eng. 5, 3060–3067 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gleghorn, J. P., Jones, A. R. C., Flannery, C. R. & Bonassar, L. J. Boundary mode lubrication of articular cartilage by recombinant human lubricin. J. Orthop. Res. 27, 771–777 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Abubacker, S. et al. Full-length recombinant human proteoglycan 4 interacts with hyaluronan to provide cartilage boundary lubrication. Ann. Biomed. Eng. 44, 1128–1137 (2016).

    Article  PubMed  Google Scholar 

  135. Jay, G. D. et al. Prevention of cartilage degeneration and restoration of chondroprotection by lubricin tribosupplementation in the rat following anterior cruciate ligament transection. Arthritis Rheum. 62, 2382–2391 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Waller, K. A. et al. Intra-articular recombinant human proteoglycan 4 mitigates cartilage damage after destabilization of the medial meniscus in the Yucatan minipig. Am. J. Sports Med. 45, 1512–1521 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Shurer, C. R. et al. Stable recombinant production of codon-scrambled lubricin and mucin in human cells. Biotechnol. Bioeng. 116, 1292–1303 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Flannery, C. R. et al. Prevention of cartilage degeneration in a rat model of osteoarthritis by intraarticular treatment with recombinant lubricin. Arthritis Rheum. 60, 840–847 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Lambiase, A. et al. A two-week, randomized, double-masked study to evaluate safety and efficacy of lubricin (150 μg/mL) eye drops versus sodium hyaluronate (HA) 0.18% eye drops (Vismed®) in patients with moderate dry eye disease. Ocul. Surf. 15, 77–87 (2017).

    Article  PubMed  Google Scholar 

  140. Cooper, B. G. et al. A polymer network architecture provides superior cushioning and lubrication of soft tissue compared to a linear architecture. Biomater. Sci. 11, 7339–7345 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Cai, Z., Zhang, H., Wei, Y., Wu, M. & Fu, A. Shear-thinning hyaluronan-based fluid hydrogels to modulate viscoelastic properties of osteoarthritis synovial fluids. Biomater. Sci. 7, 3143–3157 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Chen, M. et al. Gellan gum modified hyaluronic acid hydrogels as viscosupplements with lubrication maintenance and enzymatic resistance. J. Mater. Chem. B 10, 4479–4490 (2022).

    Article  CAS  PubMed  Google Scholar 

  143. Mou, D. et al. Intra-articular injection of chitosan-based supramolecular hydrogel for osteoarthritis treatment. Tissue Eng. Regen. Med. 18, 113–125 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kivitz, A. et al. A randomized, open-label, single-dose study to assess safety and systemic exposure of triamcinolone acetonide extended-release in patients with hip osteoarthritis. Rheumatol. Ther. 9, 679–691 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Conaghan, P. G. et al. Effects of a single intra-articular injection of a microsphere formulation of triamcinolone acetonide on knee osteoarthritis pain: a double-blinded, randomized, placebo-controlled, multinational study. J. Bone Joint Surg. Am. 100, 666–677 (2018).

    Article  PubMed  Google Scholar 

  146. Conaghan, P. G. et al. Brief report: a phase IIb trial of a novel extended-release microsphere formulation of triamcinolone acetonide for intraarticular injection in knee osteoarthritis. Arthritis Rheumatol. 70, 204–211 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Lawson, T. B., Mäkelä, J. T. A., Klein, T., Snyder, B. D. & Grinstaff, M. W. Nanotechnology and osteoarthritis. part 2: opportunities for advanced devices and therapeutics. J. Orthop. Res. 39, 473–484 (2021).

    Article  PubMed  Google Scholar 

  148. Zhao, W. et al. Dopamine/phosphorylcholine copolymer as an efficient joint lubricant and ROS scavenger for the treatment of osteoarthritis. ACS Appl. Mater. Interfaces 12, 51236–51248 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Lin, W., Kampf, N., Goldberg, R., Driver, M. J. & Klein, J. Poly-phosphocholinated liposomes form stable superlubrication vectors. Langmuir 35, 6048–6054 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Lin, W., Goldberg, R. & Klein, J. Poly-phosphocholination of liposomes leads to highly-extended retention time in mice joints. J. Mater. Chem. B 10, 2820–2827 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Charlesworth, J., Fitzpatrick, J., Perera, N. K. P. & Orchard, J. Osteoarthritis — a systematic review of long-term safety implications for osteoarthritis of the knee. BMC Musculoskelet. Disord. 20, 151 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Yang, L., Sun, L., Zhang, H., Bian, F. & Zhao, Y. Ice-inspired lubricated drug delivery particles from microfluidic electrospray for osteoarthritis treatment. ACS Nano 15, 20600–20606 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. Han, Z. et al. Nanofat functionalized injectable super-lubricating microfluidic microspheres for treatment of osteoarthritis. Biomaterials 285, 121545 (2022).

    Article  CAS  PubMed  Google Scholar 

  154. Grünherz, L., Sanchez-Macedo, N., Frueh, F. S., McLuckie, M. & Lindenblatt, N. Nanofat applications: from clinical esthetics to regenerative research: potential applications of nanofat in tissue regeneration with a focus on wound healing and vascularization. Curr. Opin. Biomed. Eng. 10, 174–180 (2019).

    Article  Google Scholar 

  155. Burzio, L. O., Burzio, V. A., Silva, T., Burzio, L. A. & Pardo, J. Environmental bioadhesion: themes and applications. Curr. Opin. Biotechnol. 8, 309–312 (1997).

    Article  CAS  PubMed  Google Scholar 

  156. Feinberg, H. & Hanks, T. W. Polydopamine: a bioinspired adhesive and surface modification platform. Polym. Int. 71, 578–582 (2022).

    Article  CAS  Google Scholar 

  157. Yang, J. et al. Ball-bearing-inspired polyampholyte-modified microspheres as bio-lubricants attenuate osteoarthritis. Small 16, 2004519 (2020).

    Article  CAS  Google Scholar 

  158. Lei, Y. et al. Injectable hydrogel microspheres with self-renewable hydration layers alleviate osteoarthritis. Sci. Adv. 8, eabl6449 (2023).

    Article  Google Scholar 

  159. Trujillo, R. J., Tam, A. T., Bonassar, L. J. & Putnam, D. Effective viscous lubrication of cartilage with low viscosity microgels. Materialia 33, 102000 (2024).

    Article  CAS  Google Scholar 

  160. Jahn, S., Seror, J. & Klein, J. Lubrication of articular cartilage. Annu. Rev. Biomed. Eng. 18, 235–258 (2016).

    Article  CAS  PubMed  Google Scholar 

  161. Chawla, K., Ham, H. O., Nguyen, T. & Messersmith, P. B. Molecular resurfacing of cartilage with proteoglycan 4. Acta Biomater. 6, 3388–3394 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Abubacker, S., Ham, H. O., Messersmith, P. B. & Schmidt, T. A. Cartilage boundary lubricating ability of aldehyde modified proteoglycan 4 (PRG4-CHO). Osteoarthritis Cartilage 21, 186–189 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Morgese, G., Ramakrishna, S. N., Simic, R., Zenobi-Wong, M. & Benetti, E. M. Hairy and slippery polyoxazoline-based copolymers on model and cartilage surfaces. Biomacromolecules 19, 680–690 (2018).

    Article  CAS  PubMed  Google Scholar 

  164. Morgese, G., Cavalli, E., Rosenboom, J.-G., Zenobi-Wong, M. & Benetti, E. M. Cyclic polymer grafts that lubricate and protect damaged cartilage. Angew. Chem. 130, 1637–1642 (2018).

    Article  Google Scholar 

  165. Morgese, G., Cavalli, E., Müller, M., Zenobi-Wong, M. & Benetti, E. M. Nanoassemblies of tissue-reactive, polyoxazoline graft-copolymers restore the lubrication properties of degraded cartilage. ACS Nano 11, 2794–2804 (2017).

    Article  CAS  PubMed  Google Scholar 

  166. Singh, A. et al. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid. Nat. Mater. 13, 988–995 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sun, Z. et al. Boundary mode lubrication of articular cartilage with a biomimetic diblock copolymer. Proc. Natl Acad. Sci. USA 116, 12437–12441 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Nemirov, D. et al. Effect of lubricin mimetics on the inhibition of osteoarthritis in a rat anterior cruciate ligament transection model. Am. J. Sports Med. 48, 624–634 (2020).

    Article  PubMed  Google Scholar 

  169. Barthold, J. E. et al. Particulate ECM biomaterial ink is 3D printed and naturally crosslinked to form structurally-layered and lubricated cartilage tissue mimics. Biofabrication 14, 025021 (2022).

    Article  CAS  Google Scholar 

  170. Mancipe Castro, L. M., Sequeira, A., García, A. J. & Guldberg, R. E. Articular cartilage- and synoviocyte-binding poly(ethylene glycol) nanocomposite microgels as intra-articular drug delivery vehicles for the treatment of osteoarthritis. ACS Biomater. Sci. Eng. 6, 5084–5095 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Stewart, H. L. et al. A missed opportunity: a sco** review of the effect of sex and age on osteoarthritis using large animal models. Osteoarthritis Cartilage 32, 501–513 (2024).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

C.D.D.M. acknowledges support from the National Science Foundation Graduate Research Fellowship Program (DGE-1840990). T.B.L. acknowledges support from the National Institutes of Health (NIH; F31 AR075386). J.M. acknowledges support from the Academy of Finland (348410, 357787), Instrumentarium Science Foundation (190021) and the Orion Research Foundation sr. B.D.S. acknowledges support from the Harvard Catalyst Foundation. A.J., D.T.F., T.P.S., M.B., M.B.A. and M.W.G. acknowledge support from Boston University and the Wallace H. Coulter Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.W.G., C.D.D.M. and A.J. researched data for the article. M.W.G., C.D.D.M., A.J., T.B.L., T.P.S., M.B., M.B.A., J.M. and B.D.S. contributed substantially to discussion of the content. All authors wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Brian D. Snyder or Mark W. Grinstaff.

Ethics declarations

Competing interests

A patent was filed and is owned by Boston University on poly(7-oxanorbornene-2-carboxylate), a tribosupplement formulation described in the Review, and the patent is available for licensing (US8378064B2). M.W.G. is an inventor listed on the patent. No IP has been licensed to the author. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Boundary lubrication

The mode of lubrication in which the two sliding surfaces are only separated by a thin film of lubricant, such that imperfections along the surfaces can come into contact with each other.

Fluid-film lubrication

The mode of lubrication in which two sliding surfaces are completely separated by a film of lubricant.

Hydration lubrication

The phenomenon of water molecules clustering around charged groups to form hydration layers that maintain extremely low coefficients of friction.

Interstitial fluid load support

The proportion of an applied load that is supported by pressurized fluid entrapped within the cartilage matrix.

Non-Newtonian fluid

A fluid that has a variable viscosity depending on the stress applied to it.

Rheological properties

The deformation properties of a material, often described in terms of viscosity, storage modulus and loss modulus.

Shear-thinning

A rheological behaviour in which the viscosity of a fluid decreases with increasing shear strain.

Tribological properties

The frictional properties of a material during rubbing; lubricants are intended to affect tribological properties by decreasing friction between two rubbing surfaces.

Tribosupplementation

Delivery of a material, other than an exogenous hyaluronic acid solution, to a synovial joint, with the intention of improving cartilage lubrication as a treatment for osteoarthritis.

Viscosupplementation

Delivery of an exogenous hyaluronic acid solution, often formulated as sodium hyaluronate, to an osteoarthritic joint, to restore the lubricity of the synovial fluid.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeMoya, C.D., Joenathan, A., Lawson, T.B. et al. Advances in viscosupplementation and tribosupplementation for early-stage osteoarthritis therapy. Nat Rev Rheumatol 20, 432–451 (2024). https://doi.org/10.1038/s41584-024-01125-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-024-01125-5

  • Springer Nature Limited

Navigation