Log in

Valley optomechanics in a monolayer semiconductor

  • Letter
  • Published:

From Nature Photonics

View current issue Submit your manuscript

Abstract

Interfacing nanomechanics with photonics and charge/spin-based electronics has transformed information technology and facilitated fundamental searches for the quantum-to-classical transition1,2,3. Utilizing the electron valley degree of freedom as an information carrier, valleytronics has recently emerged as a promising platform for developments in computation and communication4,5,9,10,11,12,13,14,15,16. Here, we realize valley–mechanical coupling in a resonator made of the monolayer semiconductor MoS2 and transduce valley information into mechanical states. The coupling is achieved by exploiting the magnetic moment of valley carriers with a magnetic field gradient. We optically populate the valleys and observe the resulting mechanical actuation using laser interferometry. We are thus able to control the valley–mechanical interaction by adjusting the pump-laser light, the magnetic field gradient and temperature. Our work paves the way for realizing valley-actuated devices and hybrid valley quantum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Valley-controlled mechanical motion of monolayer MoS2.
Fig. 2: Monolayer MoS2 valley–mechanical device.
Fig. 3: Experimental observation of valley-actuated mechanical motion.
Fig. 4: External control of the valley–mechanical force.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Craighead, H. G. Nanoelectromechanical systems. Science 290, 1532–1535 (2000).

    Article  ADS  Google Scholar 

  2. Roukes, M. Nanoelectromechanical systems face the future. Phys. World 14, 25–31 (2001).

    Article  Google Scholar 

  3. Midolo, L., Schliesser, A. & Fiore, A. Nano-opto-electro-mechanical systems. Nat. Nanotechnol. 13, 11–18 (2018).

    Article  ADS  Google Scholar 

  4. Rycerz, A., Tworzydlo, J. & Beenakker, C. W. J. Valley filter and valley valve in graphene. Nat. Phys. 3, 172–175 (2007).

    Article  Google Scholar 

  5. Culcer, D., Saraiva, A. L., Koiller, B., Hu, X. & Sarma, S. D. Valley-based noise-resistant quantum computation using Si quantum dots. Phys. Rev. Lett. 108, 126804 (2012).

    Article  ADS  Google Scholar 

  6. Xu, X., Yao, W., **ao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Article  Google Scholar 

  7. Mak, K. F., **ao, D. & Shan, J. Light–valley interactions in 2D semiconductors. Nat. Photon. 12, 451–460 (2018).

    Article  ADS  Google Scholar 

  8. **ao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  ADS  Google Scholar 

  9. Zeng, H., Dai, J., Yao, W., **. Nat. Nanotechnol. 7, 490–493 (2012).

    Article  ADS  Google Scholar 

  10. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).

    Article  ADS  Google Scholar 

  11. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  ADS  Google Scholar 

  12. Ye, Z., Sun, D. & Heinz, T. F. Optical manipulation of valley pseudospin. Nat. Phys. 13, 26–29 (2017).

    Article  Google Scholar 

  13. Aivazian, G. et al. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys. 11, 148–152 (2015).

    Article  Google Scholar 

  14. Srivastava, A. et al. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys. 11, 141–147 (2015).

    Article  Google Scholar 

  15. Ye, Y. et al. Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. Nat. Nanotechnol. 11, 598–602 (2016).

    Article  ADS  Google Scholar 

  16. Lee, J., Wang, Z., **e, H., Mak, K. F. & Shan, J. Valley magnetoelectricity in single-layer MoS2. Nat. Mater. 16, 887–891 (2017).

    Article  ADS  Google Scholar 

  17. Gubbi, J., Buyya, R., Marusic, S. & Palaniswami, M. Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29, 1645–1660 (2013).

    Article  Google Scholar 

  18. Rebeiz, G. M. RF MEMS: Theory, Design, and Technology (John Wiley and Sons, 2004).

  19. Kovacs, G. T. A. Micromachined Transducers Sourcebook (WCB/McGraw-Hill, 1998).

  20. O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

    Article  ADS  Google Scholar 

  21. Palomaki, T. A., Harlow, J. W., Teufel, J. D., Simmonds, R. W. & Lehnert, K. W. Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature 495, 210–214 (2013).

    Article  ADS  Google Scholar 

  22. Chu, Y. et al. Quantum acoustics with superconducting qubits. Science 358, 199–202 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  23. Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).

    Article  ADS  Google Scholar 

  24. Chen, C. et al. Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotechnol. 4, 861–867 (2009).

    Article  ADS  Google Scholar 

  25. Castellanos-Gomez, A. et al. Single-layer MoS2 mechanical resonators. Adv. Mater. 25, 6719–6723 (2013).

    Article  Google Scholar 

  26. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  ADS  Google Scholar 

  27. Morell, N. et al. High quality factor mechanical resonators based on WSe2 monolayers. Nano Lett. 16, 5102–5108 (2016).

    Article  ADS  Google Scholar 

  28. Jensen, K., Kim, K. & Zettl, A. An atomic-resolution nanomechanical mass sensor. Nat. Nanotechnol. 3, 533–537 (2008).

    Article  ADS  Google Scholar 

  29. Wang, Z. & Feng, P. X.-L. Interferometric motion detection in atomic layer 2D nanostructures: visualizing signal transduction efficiency and optimization pathways. Sci. Rep. 6, 28923 (2016).

    Article  ADS  Google Scholar 

  30. Lagarde, D. et al. Carrier and polarization dynamics in monolayer MoS2. Phys. Rev. Lett. 112, 047401 (2014).

    Article  ADS  Google Scholar 

  31. Yang, L. et al. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2. Nat. Phys. 11, 830–834 (2015).

    Article  Google Scholar 

  32. Plechinger, G. et al. Valley dynamics of excitons in monolayer dichalcogenides. Phys. Status Solidi RRL 11, 1700131 (2017).

    Article  Google Scholar 

  33. Carvalho, B. R. et al. Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy. Nat. Commun. 8, 14670 (2017).

    Article  ADS  Google Scholar 

  34. Tao, Y., Eichler, A., Holzherr, T. & Degen, C. L. Ultrasensitive mechanical detection of magnetic moment using a commercial disk drive write head. Nat. Commun. 7, 12714 (2016).

    Article  ADS  Google Scholar 

  35. Kim, J. et al. Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Sci. Adv. 3, e1700518 (2017).

    Article  ADS  Google Scholar 

  36. Fong, K. Y. et al. Valley-optomechanics in a monolayer semiconductor. Proc. SPIE 10733, 107330E (2018).

    Google Scholar 

Download references

Acknowledgements

We acknowledge support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under contract number DEAC02-05-CH11231 (van der Waals Heterostructures Program, KCWF16) for theory, device fabrication and data analysis; from the King Abdullah University of Science and Technology (KAUST), Office of Sponsored Research (OSR) under award number OSR-2016-CRG5-2996 for sample preparation; and from the Office of Naval Research (ONR) MURI programme under grant number N00014-13-1-0631 for mechanical design and measurements.

Author information

Authors and Affiliations

Authors

Contributions

K.Y.F., H.Z., H.-K.L. and X.Z. conceived the project. H.-K.L. and K.Y.F. designed the experiment and performed the measurement. K.Y.F., H.-K.L., S.W. and S.Y. fabricated the substrate. H.-K.L., Q.L. and S.W. performed the MoS2 transfer. H.-K.L., K.Y.F., H.Z. and X.Z. analysed the data and wrote the manuscript with inputs from all authors. X.Z., Y.W. and S.Y. guided the research.

Corresponding author

Correspondence to **ang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains more information about the work and Supplementary Figures 1−17.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HK., Fong, K.Y., Zhu, H. et al. Valley optomechanics in a monolayer semiconductor. Nat. Photonics 13, 397–401 (2019). https://doi.org/10.1038/s41566-019-0428-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-019-0428-0

  • Springer Nature Limited

This article is cited by

Navigation