Log in

Cyclin D1 promotes BRCA2-Rad51 interaction by restricting cyclin A/B-dependent BRCA2 phosphorylation

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

BRCA2 has an important role in the maintenance of genome stability by interacting with RAD51 recombinase through its C-terminal domain. This interaction is abrogated by cyclin A-CDK2-mediated phosphorylation of BRCA2 at serine 3291 (Ser3291). Recently, we showed that cyclin D1 facilitates RAD51 recruitment to BRCA2-containing DNA repair foci, and that downregulation of cyclin D1 leads to inefficient homologous-mediated DNA repair. Here, we demonstrate that cyclin D1, via amino acids 20–90, interacts with the C-terminal domain of BRCA2, and that this interaction is increased in response to DNA damage. Interestingly, CDK4–cyclin D1 does not phosphorylate Ser3291. Instead, cyclin D1 bars cyclin A from the C-terminus of BRCA2, prevents cyclin A-CDK2-dependent Ser3291 phosphorylation and facilitates RAD51 binding to the C-terminal domain of BRCA2. These findings indicate that the interplay between cyclin D1 and other cyclins such as cyclin A regulates DNA integrity through RAD51 interaction with the BRCA2 C-terminal domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 1995; 378: 789–792.

    Article  CAS  PubMed  Google Scholar 

  2. Connor F, Bertwistle D, Mee PJ, Ross GM, Swift S, Grigorieva E et al. Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nat Genet 1997; 17: 423–430.

    Article  CAS  PubMed  Google Scholar 

  3. Patel KJ, Yu VP, Lee H, Corcoran A, Thistlethwaite FC, Evans MJ et al. Involvement of Brca2 in DNA repair. Mol Cell 1998; 1: 347–357.

    Article  CAS  PubMed  Google Scholar 

  4. Yu VP, Koehler M, Steinlein C, Schmid M, Hanakahi LA, van Gool AJ et al. Gross chromosomal rearrangements and genetic exchange between nonhomologous chromosomes following BRCA2 inactivation. Genes Dev 2000; 14: 1400–1406.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gretarsdottir S, Thorlacius S, Valgardsdottir R, Gudlaugsdottir S, Sigurdsson S, Steinarsdottir M et al. BRCA2 and p53 mutations in primary breast cancer in relation to genetic instability. Cancer Res 1998; 58: 859–862.

    CAS  PubMed  Google Scholar 

  6. Moynahan ME, Pierce AJ, Jasin M . BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell 2001; 7: 263–272.

    Article  CAS  PubMed  Google Scholar 

  7. Tutt A, Bertwistle D, Valentine J, Gabriel A, Swift S, Ross G et al. Mutation in Brca2 stimulates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequences. EMBO J 2001; 20: 4704–4716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. **a F, Taghian DG, DeFrank JS, Zeng ZC, Willers H, Iliakis G et al. Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining. Proc Natl Acad Sci USA 2001; 98: 8644–8649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Esashi F, Galkin VE, Yu X, Egelman EH, West SC . Stabilization of RAD51 nucleoprotein filaments by the C-terminal region of BRCA2. Nat Struct Mol Biol 2007; 14: 468–474.

    Article  CAS  PubMed  Google Scholar 

  10. Jensen RB, Carreira A, Kowalczykowski SC . Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 2010; 467: 678–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu J, Doty T, Gibson B, Heyer WD . Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA. Nat Struct Mol Biol 2010; 17: 1260–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moynahan ME, Jasin M . Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 2010; 11: 196–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M . Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 2011; 145: 529–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goggins M, Schutte M, Lu J, Moskaluk CA, Weinstein CL, Petersen GM et al. Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res 1996; 56: 5360–5364.

    CAS  PubMed  Google Scholar 

  15. Berman DB, Costalas J, Schultz DC, Grana G, Daly M, Godwin AK . A common mutation in BRCA2 that predisposes to a variety of cancers is found in both Jewish Ashkenazi and non-Jewish individuals. Cancer Res 1996; 56: 3409–3414.

    CAS  PubMed  Google Scholar 

  16. Lancaster JM, Wooster R, Mangion J, Phelan CM, Cochran C, Gumbs C et al. BRCA2 mutations in primary breast and ovarian cancers. Nat Genet 1996; 13: 238–240.

    Article  CAS  PubMed  Google Scholar 

  17. Spain BH, Larson CJ, Shihabuddin LS, Gage FH, Verma IM . Truncated BRCA2 is cytoplasmic: implications for cancer-linked mutations. Proc Natl Acad Sci USA 1999; 96: 13920–13925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jasin M, Rothstein R . Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol 2013; 5: a012740.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Huertas P, Jackson SP . Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J Biol Chem 2009; 284: 9558–9565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang H, Shi LZ, Wong CC, Han X, Hwang PY, Truong LN et al. The interaction of CtIP and Nbs1 connects CDK and ATM to regulate HR-mediated double-strand break repair. PLoS Genet 2013; 9: e1003277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huertas P, Cortes-Ledesma F, Sartori AA, Aguilera A, Jackson SP . CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature 2008; 455: 689–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Falck J, Forment JV, Coates J, Mistrik M, Lukas J, Bartek J et al. CDK targeting of NBS1 promotes DNA-end resection, replication restart and homologous recombination. EMBO Rep 2012; 13: 561–568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Esashi F, Christ N, Gannon J, Liu Y, Hunt T, Jasin M et al. CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature 2005; 434: 598–604.

    Article  CAS  PubMed  Google Scholar 

  24. Yata K, Bleuyard JY, Nakato R, Ralf C, Katou Y, Schwab RA et al. BRCA2 coordinates the activities of cell-cycle kinases to promote genome stability. Cell Rep 2014; 7: 1547–1559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Buckley MF, Sweeney KJ, Hamilton JA, Sini RL, Manning DL, Nicholson RI et al. Expression and amplification of cyclin genes in human breast cancer. Oncogene 1993; 8: 2127–2133.

    CAS  PubMed  Google Scholar 

  26. Bartkova J, Lukas J, Strauss M, Bartek J . Cyclin D1 oncoprotein aberrantly accumulates in malignancies of diverse histogenesis. Oncogene 1995; 10: 775–778.

    CAS  PubMed  Google Scholar 

  27. Gillett C, Fantl V, Smith R, Fisher C, Bartek J, Dickson C et al. Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res 1994; 54: 1812–1817.

    CAS  PubMed  Google Scholar 

  28. Komatsu H, Yoshida K, Seto M, Iida S, Aikawa T, Ueda R et al. Overexpression of PRAD1 in a mantle zone lymphoma patient with a t(11;22)(q13;q11) translocation. Br J Haematol 1993; 85: 427–429.

    Article  CAS  PubMed  Google Scholar 

  29. Bosch F, Jares P, Campo E, Lopez-Guillermo A, Piris MA, Villamor N et al. PRAD-1/cyclin D1 gene overexpression in chronic lymphoproliferative disorders: a highly specific marker of mantle cell lymphoma. Blood 1994; 84: 2726–2732.

    CAS  PubMed  Google Scholar 

  30. Jiang W, Kahn SM, Tomita N, Zhang YJ, Lu SH, Weinstein IB . Amplification and expression of the human cyclin D gene in esophageal cancer. Cancer Res 1992; 52: 2980–2983.

    CAS  PubMed  Google Scholar 

  31. Jares P, Fernandez PL, Campo E, Nadal A, Bosch F, Aiza G et al. PRAD-1/cyclin D1 gene amplification correlates with messenger RNA overexpression and tumor progression in human laryngeal carcinomas. Cancer Res 1994; 54: 4813–4817.

    CAS  PubMed  Google Scholar 

  32. Bartkova J, Lukas J, Muller H, Strauss M, Gusterson B, Bartek J . Abnormal patterns of D-type cyclin expression and G1 regulation in human head and neck cancer. Cancer Res 1995; 55: 949–956.

    CAS  PubMed  Google Scholar 

  33. Bartkova J, Lukas J, Strauss M, Bartek J . The PRAD-1/cyclin D1 oncogene product accumulates aberrantly in a subset of colorectal carcinomas. Int J Cancer 1994; 58: 568–573.

    Article  CAS  PubMed  Google Scholar 

  34. Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL . Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 2011; 11: 558–572.

    Article  CAS  PubMed  Google Scholar 

  35. Jirawatnotai S, Hu Y, Michowski W, Elias JE, Becks L, Bienvenu F et al. A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature 2011; 474: 230–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li Z, Jiao X, Wang C, Shirley LA, Elsaleh H, Dahl O et al. Alternative cyclin D1 splice forms differentially regulate the DNA damage response. Cancer Res 2010; 70: 8802–8811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li Z, Chen K, Jiao X, Wang C, Willmarth NE, Casimiro MC et al. Cyclin D1 Integrates Estrogen-Mediated DNA Damage Repair Signaling. Cancer Res 2014; 74: 3959–3970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jirawatnotai S, Hu Y, Livingston DM, Sicinski P . Proteomic identification of a direct role for cyclin d1 in DNA damage repair. Cancer Res 2012; 72: 4289–4293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee M, Daniels MJ, Venkitaraman AR . Phosphorylation of BRCA2 by the Polo-like kinase Plk1 is regulated by DNA damage and mitotic progression. Oncogene 2004; 23: 865–872.

    Article  CAS  PubMed  Google Scholar 

  40. Mizuta R, LaSalle JM, Cheng HL, Shinohara A, Ogawa H, Copeland N et al. RAB22 and RAB163/mouse BRCA2: proteins that specifically interact with the RAD51 protein. Proc Natl Acad Sci USA 1997; 94: 6927–6932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Davies OR, Pellegrini L . Interaction with the BRCA2 C terminus protects RAD51-DNA filaments from disassembly by BRC repeats. Nat Struct Mol Biol 2007; 14: 475–483.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bates S, Parry D, Bonetta L, Vousden K, Dickson C, Peters G . Absence of cyclin D/cdk complexes in cells lacking functional retinoblastoma protein. Oncogene 1994; 9: 1633–1640.

    CAS  PubMed  Google Scholar 

  43. Lukas J, Bartkova J, Rohde M, Strauss M, Bartek J . Cyclin D1 is dispensable for G1 control in retinoblastoma gene-deficient cells independently of cdk4 activity. Mol Cell Biol 1995; 15: 2600–2611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mailand N, Falck J, Lukas C, Syljuasen RG, Welcker M, Bartek J et al. Rapid destruction of human Cdc25A in response to DNA damage. Science 2000; 288: 1425–1429.

    Article  CAS  PubMed  Google Scholar 

  45. Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J . The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 2001; 410: 842–847.

    Article  CAS  PubMed  Google Scholar 

  46. Diehl JA, Cheng M, Roussel MF, Sherr CJ . Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 1998; 12: 3499–3511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim JK, Diehl JA . Nuclear cyclin D1: an oncogenic driver in human cancer. J Cell Physiol 2009; 220: 292–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pontano LL, Aggarwal P, Barbash O, Brown EJ, Bassing CH, Diehl JA . Genotoxic stress-induced cyclin D1 phosphorylation and proteolysis are required for genomic stability. Mol Cell Biol 2008; 28: 7245–7258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yata K, Lloyd J, Maslen S, Bleuyard JY, Skehel M, Smerdon SJ et al. Plk1 and CK2 act in concert to regulate Rad51 during DNA double strand break repair. Mol Cell 2012; 45: 371–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pefani DE, Latusek R, Pires I, Grawenda AM, Yee KS, Hamilton G et al. RASSF1A-LATS1 signalling stabilizes replication forks by restricting CDK2-mediated phosphorylation of BRCA2. Nat Cell Biol 2014; 16: 1–8.

    Article  Google Scholar 

  51. Shimura T, Fukumoto M, Kunugita N . The role of cyclin D1 in response to long-term exposure to ionizing radiation. Cell Cycle 2013; 12: 2738–2743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Aggarwal P, Lessie MD, Lin DI, Pontano L, Gladden AB, Nuskey B et al. Nuclear accumulation of cyclin D1 during S phase inhibits Cul4-dependent Cdt1 proteolysis and triggers p53-dependent DNA rereplication. Genes Dev 2007; 21: 2908–2922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. de Boer CJ, Schuuring E, Dreef E, Peters G, Bartek J, Kluin PM et al. Cyclin D1 protein analysis in the diagnosis of mantle cell lymphoma. Blood 1995; 86: 2715–2723.

    CAS  PubMed  Google Scholar 

  54. Boonen GJ, van Oirschot BA, van Diepen A, Mackus WJ, Verdonck LF, Rijksen G et al. Cyclin D3 regulates proliferation and apoptosis of leukemic T cell lines. J Biol Chem 1999; 274: 34676–34682.

    Article  CAS  PubMed  Google Scholar 

  55. Hashimoto Y, Ray Chaudhuri A, Lopes M, Costanzo V . Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat Struct Mol Biol 2010; 17: 1305–1311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lord CJ, Ashworth A . Targeted therapy for cancer using PARP inhibitors. Curr Opin Pharmacol 2008; 8: 363–369.

    Article  CAS  PubMed  Google Scholar 

  57. Javanmoghadam-Kamrani S, Keyomarsi K . Synchronization of the cell cycle using lovastatin. Cell Cycle 2008; 7: 2434–2440.

    Article  CAS  PubMed  Google Scholar 

  58. Matsuura I, Denissova NG, Wang G, He D, Long J, Liu F . Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature 2004; 430: 226–231.

    Article  CAS  PubMed  Google Scholar 

  59. Thorslund T, Esashi F, West SC . Interactions between human BRCA2 protein and the meiosis-specific recombinase DMC1. EMBO J 2007; 26: 2915–2922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zwicker J, Brusselbach S, Jooss KU, Sewing A, Behn M, Lucibello FC et al. Functional domains in cyclin D1: pRb-kinase activity is not essential for transformation. Oncogene 1999; 18: 19–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Piotr Sicinski, Dana-Farber Cancer Institute, in whose laboratory this work was initiated. This study was supported by Thailand Research Fund RSA5580018, Siriraj Research Fund, Faculty of Medicine Siriraj Hospital, Mahidol University, and the Advanced Research on Pharmacology Fund, Siriraj Foundation D003421. SJ was supported by the Chalermphrakiat Grant, Faculty of Medicine Siriraj Hospital, Mahidol University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Jirawatnotai.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalermru**anant, C., Michowski, W., Sittithumcharee, G. et al. Cyclin D1 promotes BRCA2-Rad51 interaction by restricting cyclin A/B-dependent BRCA2 phosphorylation. Oncogene 35, 2815–2823 (2016). https://doi.org/10.1038/onc.2015.354

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.354

  • Springer Nature Limited

This article is cited by

Navigation