Log in

Imaging of anticancer drug action in single cells

  • Review Article
  • Published:

From Nature Reviews Cancer

View current issue Sign up to alerts

Key Points

  • The in vivo microscopy toolbox enables extended live-animal 3D imaging in orthotopic disease sites, deeper imaging through tissue and multiple simultaneous molecular measurements.

  • Imaging of multiple single cells can assess tumour heterogeneity, tumour evolution following drug treatment and drug–target binding; it also enables visualization of micro-anatomical structures and distinct and rare cell types.

  • Fluorescently labelled drugs and nanoformulations reveal mechanisms of delivery and binding within tumours.

  • Imaging can show differences in drug response in vivo compared with in vitro tissue culture models.

  • Components of the tumour microenvironment, including the extracellular matrix, immune cells and vasculature, can be studied for their role in influencing drug action.

  • The distribution and effect of immunotherapies including those that block immune checkpoints can be visualized in the tumour and draining lymph nodes.

  • In vivo microscopy provides a complementary high-resolution perspective to lower-resolution imaging modalities such as positron emission tomography–computed tomography and magnetic resonance imaging that are used in the clinic.

Abstract

Imaging is widely used in anticancer drug development, typically for whole-body tracking of labelled drugs to different organs or to assess drug efficacy through volumetric measurements. However, increasing attention has been drawn to pharmacology at the single-cell level. Diverse cell types, including cancer-associated immune cells, physicochemical features of the tumour microenvironment and heterogeneous cell behaviour all affect drug delivery, response and resistance. This Review summarizes developments in the imaging of in vivo anticancer drug action, with a focus on microscopy approaches at the single-cell level and translational lessons for the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Imaging pharmacokinetic/pharmacodynamic processes with in vivo microscopy.
Figure 2: Direct and indirect modes of pharmacokinetic imaging.
Figure 3: Example drug delivery problems elucidated by microscopy.
Figure 4: Imaging drug binding and problems thereof.
Figure 5: Imaging the role of myeloid cells in influencing drug action.

Similar content being viewed by others

References

  1. Orth, J. D. et al. Analysis of mitosis and antimitotic drug responses in tumors by in vivo microscopy and single-cell pharmacodynamics. Cancer Res. 71, 4608–4616 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Harrison, R. K. Phase II and phase III failures: 2013–2015. Nat. Rev. Drug Discov. 15, 817–818 (2016).

    CAS  PubMed  Google Scholar 

  3. Hay, M., Thomas, D. W., Craighead, J. L., Economides, C. & Rosenthal, J. Clinical development success rates for investigational drugs. Nat. Biotechnol. 32, 40–51 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Weissleder, R., Schwaiger, M. C., Gambhir, S. S. & Hricak, H. Imaging approaches to optimize molecular therapies. Sci. Transl Med. 8, 355ps16 (2016).

    PubMed  Google Scholar 

  5. Mudd, S. R. et al. Molecular imaging in oncology drug development. Drug Discov. Today 22, 140–147 (2017).

    CAS  PubMed  Google Scholar 

  6. Matusch, A. & Kroll, T. in Basic Science of PET Imaging (ed. Khalil, M. M. ) 485–535 (Springer International Publishing, 2016).

  7. Topalian, S. L., Taube, J. M., Anders, R. A. & Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 16, 275–287 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Arlauckas, S. P. et al. In vivo imaging reveals a tumor-associated macrophage mediated resistance pathway in anti-PD-1 therapy. Sci. Transl Med. 9, eaal3604 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. Miller, M. A. et al. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Sci. Transl Med. 7, 314ra183 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. Miller, M. A. et al. Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular bursts. Sci. Transl Med. 9, eaal0225 (2017).

    PubMed  PubMed Central  Google Scholar 

  11. Ellenbroek, S. I. & van Rheenen, J. Imaging hallmarks of cancer in living mice. Nat. Rev. Cancer 14, 406–418 (2014).

    CAS  PubMed  Google Scholar 

  12. Dovas, A., Patsialou, A., Harney, A. S., Condeelis, J. & Cox, D. Imaging interactions between macrophages and tumour cells that are involved in metastasis in vivo and in vitro. J. Microsc. 251, 261–269 (2013).

    CAS  PubMed  Google Scholar 

  13. Lohela, M. & Werb, Z. Intravital imaging of stromal cell dynamics in tumors. Curr. Opin. Genet. Dev. 20, 72–78 (2010).

    CAS  PubMed  Google Scholar 

  14. Wolf, K. et al. Collagen-based cell migration models in vitro and in vivo. Semin. Cell Dev. Biol. 20, 931–941 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zanella, F., Lorens, J. B. & Link, W. High content screening: seeing is believing. Trends Biotechnol. 28, 237–245 (2010).

    CAS  PubMed  Google Scholar 

  16. Alieva, M., Ritsma, L., Giedt, R. J., Weissleder, R. & van Rheenen, J. Imaging windows for long-term intravital imaging: general overview and technical insights. Intravital 3, e29917 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. Rodriguez-Tirado, C. et al. Long-term high-resolution intravital microscopy in the lung with a vacuum stabilized imaging window. J. Vis. Exp. 116, e54603 (2016).

    Google Scholar 

  18. Headley, M. B. et al. Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature 531, 513–517 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Aguirre, A. D., Vinegoni, C., Sebas, M. & Weissleder, R. Intravital imaging of cardiac function at the single-cell level. Proc. Natl Acad. Sci. USA 111, 11257–11262 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Breunig, H. G. et al. Combined in vivo multiphoton and CARS imaging of healthy and disease-affected human skin. Microsc. Res. Tech. 75, 492–498 (2012).

    PubMed  Google Scholar 

  21. Thurber, G. M., Reiner, T., Yang, K. S., Kohler, R. H. & Weissleder, R. Effect of small-molecule modification on single-cell pharmacokinetics of PARP inhibitors. Mol. Cancer Ther. 13, 986–995 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim, E. et al. Optimized near-IR fluorescent agents for in vivo imaging of Btk expression. Bioconjug. Chem. 26, 1513–1518 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ritsma, L., Vrisekoop, N. & van Rheenen, J. In vivo imaging and histochemistry are combined in the cryosection labelling and intravital microscopy technique. Nat. Commun. 4, 2366 (2013).

    PubMed  Google Scholar 

  24. Karreman, M. A., Hyenne, V., Schwab, Y. & Goetz, J. G. Intravital correlative microscopy: imaging life at the nanoscale. Trends Cell Biol. 26, 848–863 (2016).

    PubMed  Google Scholar 

  25. Hama, H. et al. ScaleS: an optical clearing palette for biological imaging. Nat. Neurosci. 18, 1518–1529 (2015).

    CAS  PubMed  Google Scholar 

  26. Treweek, J. B. et al. Whole-body tissue stabilization and selective extractions via tissue–hydrogel hybrids for high-resolution intact circuit map** and phenoty**. Nat. Protoc. 10, 1860–1896 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tillberg, P. W. et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat. Biotechnol. 34, 987–992 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sylwestrak, E. L., Rajasethupathy, P., Wright, M. A., Jaffe, A. & Deisseroth, K. Multiplexed intact-tissue transcriptional analysis at cellular resolution. Cell 164, 792–804 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tainaka, K. et al. Whole-body imaging with single-cell resolution by tissue decolorization. Cell 159, 911–924 (2014).

    CAS  PubMed  Google Scholar 

  30. Belle, M. et al. Tridimensional visualization and analysis of early human development. Cell 169, 161–173.e12 (2017).

    CAS  PubMed  Google Scholar 

  31. Cuccarese, M. F. et al. Heterogeneity of macrophage infiltration and therapeutic response in lung carcinoma revealed by 3D organ imaging. Nat. Commun. 8, 14293 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20, 436–442 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Remark, R. et al. In-depth tissue profiling using multiplexed immunohistochemical consecutive staining on single slide. Sci. Immunol. 1, aaf6925 (2016). Multiplexed immunohistochemistry using widely available reagents and image cycling enables in-depth profiling, here applied to immune checkpoint blockade analysis.

    PubMed  Google Scholar 

  34. Lin, J. R., Fallahi-Sichani, M. & Sorger, P. K. Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method. Nat. Commun. 6, 8390 (2015).

    CAS  PubMed  Google Scholar 

  35. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    PubMed  Google Scholar 

  36. Gerwien, H. et al. Imaging matrix metalloproteinase activity in multiple sclerosis as a specific marker of leukocyte penetration of the blood–brain barrier. Sci. Transl Med. 8, 364ra152 (2016).

    PubMed  Google Scholar 

  37. Carlucci, G. et al. Dual-modality optical/PET imaging of PARP1 in glioblastoma. Mol. Imaging Biol. 17, 848–855 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Carney, B. et al. Non-invasive PET imaging of PARP1 expression in glioblastoma models. Mol. Imaging Biol. 18, 386–392 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Thurber, G. M. et al. Single-cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo. Nat. Commun. 4, 1504 (2013).

    PubMed  Google Scholar 

  40. Hendricks, J. A. et al. Synthesis of [18F]BODIPY: bifunctional reporter for hybrid optical/positron emission tomography imaging. Angew. Chem. Int. Ed. 51, 4603–4606 (2012).

    CAS  Google Scholar 

  41. Keliher, E. J., Klubnick, J. A., Reiner, T., Mazitschek, R. & Weissleder, R. Efficient acid-catalyzed 18F/19F fluoride exchange of BODIPY dyes. ChemMedChem 9, 1368–1373 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Meimetis, L. G. et al. Bioorthogonal fluorophore linked DFO-technology enabling facile chelator quantification and multimodal imaging of antibodies. Bioconjug. Chem. 27, 257–263 (2016).

    CAS  PubMed  Google Scholar 

  43. Phillips, E. et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl Med. 6, 260ra149 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. Cai, W. et al. Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. Eur. J. Nucl. Med. Mol. Imaging 34, 850–858 (2007).

    CAS  PubMed  Google Scholar 

  45. Ogawa, M. et al. Dual-modality molecular imaging using antibodies labeled with activatable fluorescence and a radionuclide for specific and quantitative targeted cancer detection. Bioconjug. Chem. 20, 2177–2184 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Seo, J. W., Zhang, H., Kukis, D. L., Meares, C. F. & Ferrara, K. W. A novel method to label preformed liposomes with 64Cu for positron emission tomography (PET) imaging. Bioconjug. Chem. 19, 2577–2584 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Seynhaeve, A. L., Dicheva, B. M., Hoving, S., Koning, G. A. & ten Hagen, T. L. Intact Doxil is taken up intracellularly and released doxorubicin sequesters in the lysosome: evaluated by in vitro/in vivo live cell imaging. J. Control. Release 172, 330–340 (2013).

    CAS  PubMed  Google Scholar 

  48. Hosoya, H. et al. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release. Proc. Natl Acad. Sci. USA 113, 1877–1882 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Schilling, F. et al. MRI measurements of reporter-mediated increases in transmembrane water exchange enable detection of a gene reporter. Nat. Biotechnol. 35, 75–80 (2016).

    PubMed  PubMed Central  Google Scholar 

  50. Weissleder, R. et al. In vivo magnetic resonance imaging of transgene expression. Nat. Med. 6, 351–355 (2000).

    CAS  PubMed  Google Scholar 

  51. Keu, K. V. et al. Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci. Transl Med. 9, eaag2196 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. Patrick, P. S. et al. Dual-modality gene reporter for in vivo imaging. Proc. Natl Acad. Sci. USA 111, 415–420 (2014).

    CAS  PubMed  Google Scholar 

  53. Laughney, A. M. et al. Single-cell pharmacokinetic imaging reveals a therapeutic strategy to overcome drug resistance to the microtubule inhibitor eribulin. Sci. Transl Med. 6, 261ra152 (2014).

    PubMed  PubMed Central  Google Scholar 

  54. Dubach, J. M. et al. Quantitating drug-target engagement in single cells in vitro and in vivo. Nat. Chem. Biol. 13, 168–173 (2017).

    CAS  PubMed  Google Scholar 

  55. Shi, J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017).

    CAS  PubMed  Google Scholar 

  56. Zhao, Y. et al. Near-infrared fluorescence energy transfer imaging of nanoparticle accumulation and dissociation kinetics in tumor-bearing mice. ACS Nano 7, 10362–10370 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Laemmel, E. et al. Deleterious effects of intra-arterial administration of particulate steroids on microvascular perfusion in a mouse model. Radiology 279, 731–740 (2016).

    PubMed  Google Scholar 

  58. Pisoni, R., Ruggenenti, P. & Remuzzi, G. Drug-induced thrombotic microangiopathy: incidence, prevention and management. Drug Saf. 24, 491–501 (2001).

    CAS  PubMed  Google Scholar 

  59. Chauhan, A. K. et al. Systemic antithrombotic effects of ADAMTS13. J. Exp. Med. 203, 767–776 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yuan, F. et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 55, 3752–3756 (1995). Seminal IVM study to quantify the relationship between molecular size and vessel permeability, using a model antibody, albumin and liposomes.

    CAS  PubMed  Google Scholar 

  61. Bhatnagar, S., Deschenes, E., Liao, J., Cilliers, C. & Thurber, G. M. Multichannel imaging to quantify four classes of pharmacokinetic distribution in tumors. J. Pharm. Sci. 103, 3276–3286 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Provenzano, P. P. et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21, 418–429 (2012). Extensive IVM characterization of desmoplasia and its effects on drug delivery in PDAC, and demonstration of a matrix-degrading strategy to overcome fibrosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Cabral, H. et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 6, 815–823 (2011).

    CAS  PubMed  Google Scholar 

  64. Dicheva, B. M. et al. Enhanced specificity and drug delivery in tumors by cRGD-anchoring thermosensitive liposomes. Pharm. Res. 32, 3862–3876 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, L. et al. Mild hyperthermia triggered doxorubicin release from optimized stealth thermosensitive liposomes improves intratumoral drug delivery and efficacy. J. Control. Release 168, 142–150 (2013).

    CAS  PubMed  Google Scholar 

  66. Rapoport, N., Gupta, R., Kim, Y. S. & O'Neill, B. E. Polymeric micelles and nanoemulsions as tumor-targeted drug carriers: insight through intravital imaging. J. Control. Release 206, 153–160 (2015).

    CAS  PubMed  Google Scholar 

  67. Stapleton, S., Jaffray, D. & Milosevic, M. Radiation effects on the tumor microenvironment: Implications for nanomedicine delivery. Adv. Drug Deliv. Rev. 109, 119–130 (2017).

    CAS  PubMed  Google Scholar 

  68. Miller, M. A. et al. Nano-palladium is a cellular catalyst for in vivo chemistry. Nat. Commun. (in the press).

  69. Dickson, P. V. et al. Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clin. Cancer Res. 13, 3942–3950 (2007).

    CAS  PubMed  Google Scholar 

  70. Liu, J. et al. TGF-β blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. Proc. Natl Acad. Sci. USA 109, 16618–16623 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    CAS  PubMed  Google Scholar 

  72. Harney, A. S. et al. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discov. 5, 932–943 (2015). Impressive IVM techniques to visualize highly dynamic and localized vessel permeability, and delineate mechanisms through focal laser injury and genetic and pharmacological perturbation.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Matsumoto, Y. et al. Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery. Nat. Nanotechnol. 11, 533–538 (2016).

    CAS  PubMed  Google Scholar 

  74. Fox, E. et al. Pharmacokinetic and pharmacodynamic study of tariquidar (XR9576), a P-glycoprotein inhibitor, in combination with doxorubicin, vinorelbine, or docetaxel in children and adolescents with refractory solid tumors. Cancer Chemother. Pharmacol. 76, 1273–1283 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Pichler, A., Zelcer, N., Prior, J. L., Kuil, A. J. & Piwnica-Worms, D. In vivo RNA interference-mediated ablation of MDR1 P-glycoprotein. Clin. Cancer Res. 11, 4487–4494 (2005).

    CAS  PubMed  Google Scholar 

  76. Ryan, J. C., Dunn, K. W. & Decker, B. S. Effects of chronic kidney disease on liver transport: quantitative intravital microscopy of fluorescein transport in the rat liver. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R1488–R1492 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Weiss, M., Liu, X., Thorling, C. A. & Roberts, M. S. Functional characterization of hepatic transporters using intravital microscopy. Eur. J. Pharm. Sci. 49, 845–849 (2013).

    CAS  PubMed  Google Scholar 

  78. Oh, P. et al. Live dynamic imaging of caveolae pum** targeted antibody rapidly and specifically across endothelium in the lung. Nat. Biotechnol. 25, 327–337 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Schießl, I. M. et al. Intravital imaging reveals angiotensin II-induced transcytosis of albumin by podocytes. J. Am. Soc. Nephrol. 27, 731–744 (2016).

    PubMed  Google Scholar 

  80. Lin, C. J., Kang, N., Lee, J. Y., Lee, H. S. & Dong, C. Y. Visualizing and quantifying difference in cytoplasmic and nuclear metabolism in the hepatobiliary system in vivo. J. Biomed. Opt. 20, 016020 (2015).

    PubMed  Google Scholar 

  81. Slattery, C. et al. In vivo visualization of albumin degradation in the proximal tubule. Kidney Int. 74, 1480–1486 (2008).

    CAS  PubMed  Google Scholar 

  82. Davidson, S. M. et al. Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors. Nat. Med. 23, 235–241 (2017).

    CAS  PubMed  Google Scholar 

  83. Kai, M. P. et al. Tumor presence induces global immune changes and enhances nanoparticle clearance. ACS Nano 10, 861–870 (2016).

    CAS  PubMed  Google Scholar 

  84. Dondossola, E. et al. Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. Nat. Biomed. Eng. 1, 0007 (2016).

    PubMed  PubMed Central  Google Scholar 

  85. Huynh, A. S. et al. Tumor targeting and pharmacokinetics of a near-infrared fluorescent-labeled δ-opioid receptor antagonist agent, Dmt-Tic-Cy5. Mol. Pharm. 13, 534–544 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Dubach, J. M. et al. In vivo imaging of specific drug-target binding at subcellular resolution. Nat. Commun. 5, 3946 (2014).

    CAS  PubMed  Google Scholar 

  87. Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606–612 (2017).

    CAS  PubMed  Google Scholar 

  88. Dietz, M. S., Fricke, F., Krüger, C. L., Niemann, H. H. & Heilemann, M. Receptor–ligand interactions: binding affinities studied by single-molecule and super-resolution microscopy on intact cells. Chemphyschem 15, 671–676 (2014).

    CAS  PubMed  Google Scholar 

  89. Hiroshima, M., Saeki, Y., Okada-Hatakeyama, M. & Sako, Y. Dynamically varying interactions between heregulin and ErbB proteins detected by single-molecule analysis in living cells. Proc. Natl Acad. Sci. USA 109, 13984–13989 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Tada, H., Higuchi, H., Wanatabe, T. M. & Ohuchi, N. In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res. 67, 1138–1144 (2007). IVM with high spatial and temporal resolution is able to track individual tumour-targeted antibodies as they bind to tumour cells and are endocytosed.

    CAS  PubMed  Google Scholar 

  91. Kikushima, K., Kita, S. & Higuchi, H. A non-invasive imaging for the in vivo tracking of high-speed vesicle transport in mouse neutrophils. Sci. Rep. 3, 1913 (2013).

    PubMed  PubMed Central  Google Scholar 

  92. Gonda, K., Watanabe, T. M., Ohuchi, N. & Higuchi, H. In vivo nano-imaging of membrane dynamics in metastatic tumor cells using quantum dots. J. Biol. Chem. 285, 2750–2757 (2010).

    CAS  PubMed  Google Scholar 

  93. Adams, G. P. et al. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res. 61, 4750–4755 (2001).

    CAS  PubMed  Google Scholar 

  94. Miao, L. et al. The binding site barrier elicited by tumor-associated fibroblasts interferes disposition of nanoparticles in stroma-vessel type tumors. ACS Nano 10, 9243–9258 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Florian, S. & Mitchison, T. J. Anti-microtubule drugs. Methods Mol. Biol. 1413, 403–421 (2016).

    CAS  PubMed  Google Scholar 

  96. Mitchison, T. J. The proliferation rate paradox in antimitotic chemotherapy. Mol. Biol. Cell 23, 1–6 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Chittajallu, D. R. et al. In vivo cell-cycle profiling in xenograft tumors by quantitative intravital microscopy. Nat. Methods 12, 577–585 (2015). Use of IVM and machine learning methods for longitudinal monitoring of cell cycle and chromosomal abnormalities following cytotoxic treatment.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Janssen, A., Beerling, E., Medema, R. & van Rheenen, J. Intravital FRET imaging of tumor cell viability and mitosis during chemotherapy. PLoS ONE 8, e64029 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Miller, M. A., Askevold, B., Yang, K. S., Kohler, R. H. & Weissleder, R. Platinum compounds for high-resolution in vivo cancer imaging. ChemMedChem 9, 1131–1135 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Miller, M. A. et al. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat. Commun. 6, 8692 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Tanaka, K. et al. In vivo real-time imaging of chemotherapy response on the liver metastatic tumor microenvironment using multiphoton microscopy. Oncol. Rep. 28, 1822–1830 (2012).

    CAS  PubMed  Google Scholar 

  102. Oudin, M. J. et al. MENA confers resistance to paclitaxel in triple-negative breast cancer. Mol. Cancer Ther. 16, 143–155 (2017). Imaging helps to reveal the unexpected finding that bisphosphonates are taken up by TAMs in breast cancer.

    CAS  PubMed  Google Scholar 

  103. Rhim, A. D. et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25, 735–747 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Jacobetz, M. A. et al. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut 62, 112–120 (2013).

    CAS  PubMed  Google Scholar 

  105. Vennin, C. et al. Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Sci. Transl Med. 9, eaai8504 (2017).

    PubMed  PubMed Central  Google Scholar 

  106. Chauhan, V. P. et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat. Commun. 4, 2516 (2013).

    PubMed  Google Scholar 

  107. Nakasone, E. S. et al. Imaging tumor–stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell 21, 488–503 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Ben-Aharon, I. et al. Bisphosphonates in the adjuvant setting of breast cancer therapy — effect on survival: a systematic review and meta-analysis. PLoS ONE 8, e70044 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Junankar, S. et al. Real-time intravital imaging establishes tumor-associated macrophages as the extraskeletal target of bisphosphonate action in cancer. Cancer Discov. 5, 35–42 (2015).

    CAS  PubMed  Google Scholar 

  110. Melani, C., Sangaletti, S., Barazzetta, F. M., Werb, Z. & Colombo, M. P. Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor–bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res. 67, 11438–11446 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hawkins, E. D. et al. T-Cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments. Nature 538, 518–522 (2016). Careful IVM analysis of the bone-marrow niche in leukaemia, showing highly motile cells and a lack of clear chemoprotective regions.

    PubMed  PubMed Central  Google Scholar 

  112. Zhou, F., **ng, D., Wu, S. & Chen, W. R. Intravital imaging of tumor apoptosis with FRET probes during tumor therapy. Mol. Imaging Biol. 12, 63–70 (2010).

    PubMed  Google Scholar 

  113. Sadok, A. et al. Rho kinase inhibitors block melanoma cell migration and inhibit metastasis. Cancer Res. 75, 2272–2284 (2015).

    CAS  PubMed  Google Scholar 

  114. Yang, K. S., Kohler, R. H., Landon, M., Giedt, R. & Weissleder, R. Single cell resolution in vivo imaging of DNA damage following PARP inhibition. Sci. Rep. 5, 10129 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Leung, E. et al. Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway. Oncogene 36, 2680–2692 (2016).

    PubMed  PubMed Central  Google Scholar 

  116. Hirata, E. et al. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin β1/FAK signaling. Cancer Cell 27, 574–588 (2015). Single-cell IVM measurement of kinase signalling activity in tumour cells demonstrates microenvironmental biases in signalling reactivation after drug treatment.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Nobis, M. et al. Intravital FLIM-FRET imaging reveals dasatinib-induced spatial control of src in pancreatic cancer. Cancer Res. 73, 4674–4686 (2013).

    CAS  PubMed  Google Scholar 

  118. Manning, C. S. et al. Intravital imaging reveals conversion between distinct tumor vascular morphologies and localized vascular response to Sunitinib. Intravital 2, e24790 (2013).

    Google Scholar 

  119. Kodack, D. P. et al. Combined targeting of HER2 and VEGFR2 for effective treatment of HER2-amplified breast cancer brain metastases. Proc. Natl Acad. Sci. USA 109, E3119–E3127 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Singh, A. & Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741–4751 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Beerling, E. et al. Plasticity between epithelial and mesenchymal states unlinks EMT from metastasis-enhancing stem cell capacity. Cell Rep. 14, 2281–2288 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Canel, M. et al. Quantitative in vivo imaging of the effects of inhibiting integrin signaling via Src and FAK on cancer cell movement: effects on E-cadherin dynamics. Cancer Res. 70, 9413–9422 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Erami, Z. et al. Intravital FRAP imaging using an E-cadherin–GFP mouse reveals disease- and drug-dependent dynamic regulation of cell–cell junctions in live tissue. Cell Rep. 14, 152–167 (2016).

    CAS  PubMed  Google Scholar 

  124. Luo, M. et al. Mammary epithelial-specific ablation of the focal adhesion kinase suppresses mammary tumorigenesis by affecting mammary cancer stem/progenitor cells. Cancer Res. 69, 466–474 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Zomer, A. et al. Intravital imaging of cancer stem cell plasticity in mammary tumors. Stem Cells 31, 602–606 (2013).

    CAS  PubMed  Google Scholar 

  126. Zimmerer, R. M. et al. Putative CD133+ melanoma cancer stem cells induce initial angiogenesis in vivo. Microvasc. Res. 104, 46–54 (2016).

    CAS  PubMed  Google Scholar 

  127. Zimmerer, R. M. et al. CD24+ tumor-initiating cells from oral squamous cell carcinoma induce initial angiogenesis in vivo. Microvasc. Res. 112, 101–108 (2017).

    CAS  PubMed  Google Scholar 

  128. Lohela, M. et al. Intravital imaging reveals distinct responses of depleting dynamic tumor-associated macrophage and dendritic cell subpopulations. Proc. Natl Acad. Sci. USA 111, E5086–E5095 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Park, C., Arthos, J., Cicala, C. & Kehrl, J. H. The HIV-1 envelope protein gp120 is captured and displayed for B cell recognition by SIGN-R1+ lymph node macrophages. eLife 4, e06467 (2015).

    PubMed Central  Google Scholar 

  130. Shulman, Z. et al. Dynamic signaling by T follicular helper cells during germinal center B cell selection. Science 345, 1058–1062 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Henrickson, S. E. et al. In vivo imaging of T cell priming. Sci. Signal. 1, pt2 (2008).

    PubMed  Google Scholar 

  132. Moalli, F. et al. Thromboxane A2 acts as tonic immunoregulator by preferential disruption of low-avidity CD4+ T cell-dendritic cell interactions. J. Exp. Med. 211, 2507–2517 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Engelhardt, J. J. et al. Marginating dendritic cells of the tumor microenvironment cross-present tumor antigens and stably engage tumor-specific T cells. Cancer Cell 21, 402–417 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Liu, D. et al. T-B-cell entanglement and ICOSL-driven feed-forward regulation of germinal centre reaction. Nature 517, 214–218 (2015).

    CAS  PubMed  Google Scholar 

  135. Gerner, M. Y., Kastenmuller, W., Ifrim, I., Kabat, J. & Germain, R. N. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity 37, 364–376 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Engblom, C., Pfirschke, C. & Pittet, M. J. The role of myeloid cells in cancer therapies. Nat. Rev. Cancer 16, 447–462 (2016).

    CAS  PubMed  Google Scholar 

  137. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016). Application of multicolour confocal imaging and histocytometry of immune cells to study spatially defined response to immune checkpoint blockade.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Pentcheva-Hoang, T., Simpson, T. R., Montalvo-Ortiz, W. & Allison, J. P. Cytotoxic T lymphocyte antigen-4 blockade enhances antitumor immunity by stimulating melanoma-specific T-cell motility. Cancer Immunol. Res. 2, 970–980 (2014).

    CAS  PubMed  Google Scholar 

  139. Ruocco, M. G. et al. Suppressing T cell motility induced by anti-CTLA-4 monotherapy improves antitumor effects. J. Clin. Invest. 122, 3718–3730 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Waite, J. C. et al. Interference with Ca2+ release activated Ca2+ (CRAC) channel function delays T-cell arrest in vivo. Eur. J. Immunol. 43, 3343–3354 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Weigelin, B. et al. Focusing and sustaining the antitumor CTL effector killer response by agonist anti-CD137 mAb. Proc. Natl Acad. Sci. USA 112, 7551–7556 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Lin, K. L. et al. Intravital imaging of donor allogeneic effector and regulatory T cells with host dendritic cells during GVHD. Blood 123, 1604–1614 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Lehmann, S. et al. In vivo fluorescence imaging of the activity of CEA TCB, a novel T-cell bispecific antibody, reveals highly specific tumor targeting and fast induction of T-cell-mediated tumor killing. Clin. Cancer Res. 22, 4417–4427 (2016).

    CAS  PubMed  Google Scholar 

  144. Linke, R., Klein, A. & Seimetz, D. Catumaxomab: clinical development and future directions. MAbs 2, 129–136 (2010).

    PubMed  PubMed Central  Google Scholar 

  145. Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Wang, Z., Li, J., Cho, J. & Malik, A. B. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils. Nat. Nanotechnol. 9, 204–210 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Chu, D., Gao, J. & Wang, Z. Neutrophil-mediated delivery of therapeutic nanoparticles across blood vessel barrier for treatment of inflammation and infection. ACS Nano 9, 11800–11811 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Park, J. et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci. Transl Med. 8, 361ra138 (2016). IVM identifies neutrophil-derived microenvironmental features of lung metastases in a mouse breast cancer model and guides an effective drug delivery strategy.

    PubMed  PubMed Central  Google Scholar 

  149. Afergan, E. et al. Delivery of serotonin to the brain by monocytes following phagocytosis of liposomes. J. Control. Release 132, 84–90 (2008).

    CAS  PubMed  Google Scholar 

  150. Choi, M. R. et al. A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors. Nano Lett. 7, 3759–3765 (2007).

    CAS  PubMed  Google Scholar 

  151. Normandin, M. D. et al. Heat-induced radiolabeling of nanoparticles for monocyte tracking by PET. Angew. Chem. Int. Ed. 54, 13002–13006 (2015).

    CAS  Google Scholar 

  152. Beduneau, A. et al. Facilitated monocyte-macrophage uptake and tissue distribution of superparmagnetic iron-oxide nanoparticles. PLoS ONE 4, e4343 (2009).

    PubMed  PubMed Central  Google Scholar 

  153. Smith, B. R. et al. Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery. Nat. Nanotechnol. 9, 481–487 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Montalvao, F. et al. The mechanism of anti-CD20-mediated B cell depletion revealed by intravital imaging. J. Clin. Invest. 123, 5098–5103 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Wang, K. et al. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue. Nat. Commun. 6, 7276 (2015).

    CAS  PubMed  Google Scholar 

  156. Vinegoni, C. et al. Real-time high dynamic range laser scanning microscopy. Nat. Commun. 7, 11077 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Henriksson, J. et al. Endrov: an integrated platform for image analysis. Nat. Methods 10, 454–456 (2013).

    CAS  PubMed  Google Scholar 

  158. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  PubMed  Google Scholar 

  159. Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).

    PubMed  PubMed Central  Google Scholar 

  160. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    CAS  PubMed  Google Scholar 

  161. Pietzsch, T., Saalfeld, S., Preibisch, S. & Tomancak, P. BigDataViewer: visualization and processing for large image data sets. Nat. Methods 12, 481–483 (2015).

    CAS  PubMed  Google Scholar 

  162. Cheng, A., Gonçalves, J. T., Golshani, P., Arisaka, K. & Portera-Cailliau, C. Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing. Nat. Methods 8, 139–142 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. **ong, F. et al. Specified neural progenitors sort to form sharp domains after noisy Shh signaling. Cell 153, 550–561 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Barbier de Reuille, P. et al. MorphoGraphX: a platform for quantifying morphogenesis in 4D. eLife 4, 05864 (2015).

    PubMed  Google Scholar 

  165. Peng, H. et al. BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images. Neuron 87, 252–256 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Rizk, A. et al. Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh. Nat. Protoc. 9, 586–596 (2014).

    CAS  PubMed  Google Scholar 

  167. Shah, A. T., Diggins, K. E., Walsh, A. J., Irish, J. M. & Skala, M. C. In vivo autofluorescence imaging of tumor heterogeneity in response to treatment. Neoplasia 17, 862–870 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Fisher, D. T. et al. Intraoperative intravital microscopy permits the study of human tumour vessels. Nat. Commun. 7, 10684 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Leite-Silva, V. R. et al. The effect of formulation on the penetration of coated and uncoated zinc oxide nanoparticles into the viable epidermis of human skin in vivo. Eur. J. Pharm. Biopharm. 84, 297–308 (2013).

    CAS  PubMed  Google Scholar 

  170. Sturm, M. B. et al. Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results. Sci. Transl Med. 5, 184ra61 (2013).

    PubMed  Google Scholar 

  171. Bird-Lieberman, E. L. et al. Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett's esophagus. Nat. Med. 18, 315–321 (2012).

    CAS  PubMed  Google Scholar 

  172. Pan, Y. et al. Endoscopic molecular imaging of human bladder cancer using a CD47 antibody. Sci. Transl Med. 6, 260ra148 (2014).

    PubMed  Google Scholar 

  173. Whitley, M. J. et al. A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Sci. Transl Med. 8, 320ra4 (2016).

    PubMed  PubMed Central  Google Scholar 

  174. Kiesslich, R. et al. Identification of epithelial gaps in human small and large intestine by confocal endomicroscopy. Gastroenterology 133, 1769–1778 (2007).

    PubMed  Google Scholar 

  175. Morris, R. T. et al. Phase II study of treatment of advanced ovarian cancer with folate-receptor-targeted therapeutic (vintafolide) and companion SPECT-based imaging agent (99mTc-etarfolatide). Ann. Oncol. 25, 852–858 (2014).

    CAS  PubMed  Google Scholar 

  176. Nahrendorf, M. et al. Hybrid PET–optical imaging using targeted probes. Proc. Natl Acad. Sci. USA 107, 7910–7915 (2010).

    PubMed  PubMed Central  Google Scholar 

  177. Vennin, C., Pajic, M. & Timpson, P. Imaging fibrosis in pancreatic cancer using second harmonic generation. Pancreatology 15, 200–201 (2015).

    PubMed  Google Scholar 

  178. Maeda, H. et al. Real-time intravital imaging of pH variation associated with osteoclast activity. Nat. Chem. Biol. 12, 579–585 (2016).

    CAS  PubMed  Google Scholar 

  179. Zheng, X. et al. Tracking cancer metastasis in vivo by using an iridium-based hypoxia-activated optical oxygen nanosensor. Angew. Chem. Int. Ed. 54, 8094–8099 (2015).

    CAS  Google Scholar 

  180. Carlson, A. L. et al. Tracking single cells in live animals using a photoconvertible near-infrared cell membrane label. PLoS ONE 8, e69257 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Courtis, A. M. et al. Monoalkoxy BODIPYs — a fluorophore class for bioimaging. Bioconjug. Chem. 25, 1043–1051 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Han, H. S. et al. Quantum dot/antibody conjugates for in vivo cytometric imaging in mice. Proc. Natl Acad. Sci. USA 112, 1350–1355 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

    CAS  PubMed  Google Scholar 

  184. Shcherbakova, D. M. & Verkhusha, V. V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat. Methods 10, 751–754 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Subach, O. M., Cranfill, P. J., Davidson, M. W. & Verkhusha, V. V. An enhanced monomeric blue fluorescent protein with the high chemical stability of the chromophore. PLoS ONE 6, e28674 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Niers, J. M. et al. Single reporter for targeted multimodal in vivo imaging. J. Am. Chem. Soc. 134, 5149–5156 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Cai, D., Cohen, K. B., Luo, T., Lichtman, J. W. & Sanes, J. R. Improved tools for the Brainbow toolbox. Nat. Methods 10, 540–547 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Kong, L. et al. Continuous volumetric imaging via an optical phase-locked ultrasound lens. Nat. Methods 12, 759–762 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Nadella, K. M. et al. Random-access scanning microscopy for 3D imaging in awake behaving animals. Nat. Methods 13, 1001–1004 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Ji, N., Freeman, J. & Smith, S. L. Technologies for imaging neural activity in large volumes. Nat. Neurosci. 19, 1154–1164 (2016).

    PubMed  PubMed Central  Google Scholar 

  191. Chen, B. C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).

    PubMed  PubMed Central  Google Scholar 

  192. Royer, L. A. et al. Adaptive light-sheet microscopy for long-term, high-resolution imaging in living organisms. Nat. Biotechnol. 34, 1267–1278 (2016).

    CAS  PubMed  Google Scholar 

  193. Dubach, J. M., Vinegoni, C. & Weissleder, R. Steady state anisotropy two-photon microscopy resolves multiple, spectrally similar fluorophores, enabling in vivo multilabel imaging. Opt. Lett. 39, 4482–4485 (2014).

    PubMed  PubMed Central  Google Scholar 

  194. Amir, E.-A. D. et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31, 545–552 (2013).

    CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. Pittet (Massachusetts General Hospital (MGH)), C. Vinegoni (MGH) and T. Mitchison (Harvard Medical School) for thoughtful review, and R. Kohler (MGH) in the Weissleder lab for images and movies. This work was partly funded by NIH grants R01EB010011, R01HL122208, P50GM107618, T32CA079443 and K99CA207744.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Weissleder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Useful fluorescent reporters for imaging cell types, cellular pathways, and physiological features. (PDF 211 kb)

Supplementary information S2 (table)

Key and recent references describing the optical imaging techniques compared in Figure 1. (PDF 202 kb)

Tumour-associated myeloid cells and nanotherapeutic extravasation.

Stroma adjacent to an implanted syngeneic lung cancer tumour was imaged in a dorsal window chamber, using a chemokine (C-X3-C motif) receptor 1 (Cx3cr1)GFP/+ reporter mouse model. Multicolour imaging reveals migration and perivascular localization of GFP+ monocytes, TAMs, and dendritic cells. Also shown are vessel perfusion and extravasation kinetics of a model therapeutic nanoformulation based on polymeric micelles9, which was intravenously injected at the start of the movie. These data highlight relatively low levels of nanoparticles extravasating from the vessels into the tissue, indicated by lack of extravascular nanoparticle accumulation throughout most of the sequence. As an exception, several transient bursts of vessel leakage (marked by arrows pointing to sites where nanoparticles escape vessels and are transported into tissue), which occur near perivascular immune cells are shown towards the end of the movie. These representative data are based on experiments similar to those previously published1 (Weissleder lab). Bursts of vascular extravasation can be amplified with adjuvant treatments, such as local conformal irradiation, to enhance nanotherapeutic delivery to solid tumours10. The mechanisms and impact of bursting on nanotherapeutic delivery are extensively described elsewhere10. (MOV 8170 kb)

Olaparib-CID PK/PD. Time lapse imaging enables kinetic measurements to be made through a dorsal window chamber.

This movie shows extravasation, cellular uptake, and nuclear retention of the fluorescently tagged PARP inhibitor, olaparib (green)39, in fibrosarcoma tumour cells (HT1080 cells) that express the histone H2B– mApple fusion protein (red). This representative movie is based on data similar to those previously published39 (Weissleder lab). (MOV 5555 kb)

Imaging cell-cycle and mitotic defects.

Combined imaging of the fluorescent ubiquitylation-based cell cycle indicator (FUCCI) cell cycle reporter and histone H2B provides simultaneous visualization of cell migration, cell-cycle phase, and mitotic defects, for instance, related to metaphase arrest and chromosomal mis-segregation following treatment with a microtubule-targeting drug (paclitaxel). Lectin reveals microvasculature structure. This representative movie is based on data similar to those previously published97 (Weissleder lab). (MOV 9856 kb)

Glossary

Pharmacokinetics

(PK). The collective interactions of a drug with an organism that determine the fate of the former through processes including absorption, distribution, metabolism and excretion (ADME).

Pharmacodynamics

(PD). The effects of a drug on an organism, defined broadly here to include processes of drug–target binding, as well as corresponding changes in downstream biochemical pathways, cellular phenotypes and disease progression.

Organ clearing

Solvent-based processing of excised organs for removal of light-scattering material, such as lipids and haem, thus improving optical imaging deep through tissue.

Tissue expansion

A process by which swelling polymer gel is synthesized in excised tissue specimens, causing structural expansion and enabling molecular features to be resolved at greater apparent resolution.

Multiplexed histology by image cycling

Immunostaining of tissue sections is multiplexed to image multiple markers using multicolour labelling and image cycling, which involves repeated immunostaining, imaging, stain removal and restaining of different markers.

Volumetric IVM

A common technique used in intravital microscopy (IVM), whereby confocal or multiphoton imaging at multiple planes of focal depth through tissue is reconstructed into images of 3D tissue volumes.

Image segmentation

A post-processing technique, typically performed by algorithmic classification of shapes and intensities, to identify and outline biologically relevant compartments such as cells and vessels.

Coherent anti-Stokes Raman spectroscopy (CARS)

A technique for imaging molecular vibrational signatures as with Raman spectroscopy, but using multiple photons to produce a coherent optical signal with emitted photons of higher energy than the individual absorbed photons (that is, an anti-Stokes signal). In biological applications, CARS is useful for visualizing lipid-rich material such as myelin in a label-free manner.

Image registration

The map** of multiple images, typically acquired from different imaging modalities (for example, positron emission tomography and computed tomography) or acquisition settings, onto a shared spatial coordinate system for integrated analysis.

Syngeneic

Tumours that share sufficiently similar genetic background with the host that they can be implanted into immunocompetent animals without provoking immune rejection.

Fiducial markers

An image feature or set of features, such as defined objects placed in the field of view, that are used as points of reference to orient or register the image, to identify structural or cellular elements, to stabilize the field of view and to correct for distortions.

Mass spectrometry imaging

This technique scans a tissue with a locally ionizing beam, thereby ejecting molecules for mass spectrometry analysis and allowing multiplexed quantification of biological molecules, drugs and metal-labelled antibodies.

Extravasation kinetics

The rates at which small molecules, proteins, nanoparticles and cells move from the vasculature into neighbouring tissue.

Autochthonous

Describes tumours that arise in the host animal without surgical cell implantation. These typically form spontaneously from engineered conditional expression of oncogenic mutations in particular tissue sites.

Enhanced permeability and retention (EPR) effects

The collective influence of the multiple factors, such as increased vascular permeability, dysfunctional lymphatics and increased immune-cell infiltration, that cause macromolecules and nanoparticles to passively accumulate in some solid tumours.

Fluorescence anisotropy

The property of a fluorochrome-emitting light with biased polarization, which, for instance, can be the result of excitation with a polarized light source, combined with a slow rate of depolarization of emitted photons, owing to the binding of a fluorescent drug conjugate with its macromolecular protein target.

Quantum-dot beacons

Fluorescent semiconductor nanoparticles with high brightness, photostability and narrow yet tunable fluorescence spectra that have been conjugated to antibodies for robust multicolour imaging.

Paradoxical activation

Inhibitor response that is the opposite of what is expected based on the drug's putative mechanism of action. This generally occurs when drug treatment upregulates the target pathway, for instance, as noted with BRAF inhibitors that can stimulate MAPK activity in cells with wild-type BRAF.

Fluorescence recovery after photobleaching

(FRAP). The fluorescence microscopy technique of locally photobleaching a tissue or cell section and monitoring the rate at which fluorescence returns, which typically reveals transport kinetics such as molecular diffusion within a cell plasma membrane.

Neutrophil extracellular traps

(NETs). Networks of fibrillar extracellular material produced by neutrophils to capture and contain pathogens, which also have a role in cancer metastasis, thrombosis and inflammation. NETs primarily consist of neutrophil-derived DNA, granule proteins and chromatin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, M., Weissleder, R. Imaging of anticancer drug action in single cells. Nat Rev Cancer 17, 399–414 (2017). https://doi.org/10.1038/nrc.2017.41

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2017.41

  • Springer Nature Limited

This article is cited by

Navigation