Log in

A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors

  • Article
  • Published:

From Nature Chemical Biology

View current issue Submit your manuscript

Abstract

Kinases are principal components of signal transduction pathways and the focus of intense basic and drug discovery research. Irreversible inhibitors that covalently modify non-catalytic cysteines in kinase active sites have emerged as valuable probes and approved drugs. Many protein classes, however, have functional cysteines, and therefore understanding the proteome-wide selectivity of covalent kinase inhibitors is imperative. Here, we accomplish this objective using activity-based protein profiling coupled with quantitative MS to globally map the targets, both specific and nonspecific, of covalent kinase inhibitors in human cells. Many of the specific off-targets represent nonkinase proteins that, notably, have conserved active site cysteines. We define windows of selectivity for covalent kinase inhibitors and show that, when these windows are exceeded, rampant proteome-wide reactivity and kinase target–independent cell death conjointly occur. Our findings, taken together, provide an experimental road map to illuminate opportunities and surmount challenges for the development of covalent kinase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Figure 1: Characterization of the proteome reactivities of covalent kinase inhibitors in human cancer cells as determined by gel-based ABPP.
Figure 2: Characterization of the proteomic reactivities of covalent kinase inhibitors in cancer cells by ABPP-SILAC.
Figure 3: Analysis of protein targets of covalent kinase inhibitors.
Figure 4: Minimizing the off-target reactivity of covalent kinase inhibitors by modification of the Michael acceptor reactive group.
Figure 5: The in situ proteomic reactivity of covalent kinase inhibitors is altered by modification of the Michael acceptor.
Figure 6: Cytotoxicity and proteomic reactivity of DMAM-modified EGFR inhibitors.

Similar content being viewed by others

References

  1. Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Knight, Z.A. & Shokat, K.M. Features of selective kinase inhibitors. Chem. Biol. 12, 621–637 (2005).

    CAS  PubMed  Google Scholar 

  3. Liu, Q. et al. Develo** irreversible inhibitors of the protein kinase cysteinome. Chem. Biol. 20, 146–159 (2013).

    PubMed  PubMed Central  Google Scholar 

  4. Rosenblum, J.S., Nomanbhoy, T.K. & Kozarich, J.W. Functional interrogation of kinases and other nucleotide-binding proteins. FEBS Lett. 587, 1870–1877 (2013).

    CAS  PubMed  Google Scholar 

  5. Krishnamurty, R. & Maly, D.J. Chemical genomic and proteomic methods for determining kinase inhibitor selectivity. Comb. Chem. High Throughput Screen. 10, 652–666 (2007).

    CAS  PubMed  Google Scholar 

  6. Rix, U. & Superti-Furga, G. Target profiling of small molecules by chemical proteomics. Nat. Chem. Biol. 5, 616–624 (2009).

    CAS  PubMed  Google Scholar 

  7. Singh, J., Petter, R.C. & Kluge, A.F. Targeted covalent drugs of the kinase family. Curr. Opin. Chem. Biol. 14, 475–480 (2010).

    CAS  PubMed  Google Scholar 

  8. Carmi, C., Mor, M., Petronini, P.G. & Alfieri, R.R. Clinical perspectives for irreversible tyrosine kinase inhibitors in cancer. Biochem. Pharmacol. 84, 1388–1399 (2012).

    CAS  PubMed  Google Scholar 

  9. Barf, T. & Kaptein, A. Irreversible protein kinase inhibitors: balancing the benefits and risks. J. Med. Chem. 55, 6243–6262 (2012).

    CAS  PubMed  Google Scholar 

  10. Johnson, D.S., Weerapana, E. & Cravatt, B.F. Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Future Med. Chem. 2, 949–964 (2010).

    CAS  PubMed  Google Scholar 

  11. Potashman, M.H. & Duggan, M.E. Covalent modifiers: an orthogonal approach to drug design. J. Med. Chem. 52, 1231–1246 (2009).

    CAS  PubMed  Google Scholar 

  12. Cohen, M.S., Zhang, C., Shokat, K.M. & Taunton, J. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science 308, 1318–1321 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Leproult, E., Barluenga, S., Moras, D., Wurtz, J.M. & Winssinger, N. Cysteine map** in conformationally distinct kinase nucleotide binding sites: application to the design of selective covalent inhibitors. J. Med. Chem. 54, 1347–1355 (2011).

    CAS  PubMed  Google Scholar 

  14. Nelson, V., Ziehr, J., Agulnik, M. & Johnson, M. Afatinib: emerging next-generation tyrosine kinase inhibitor for NSCLC. Onco. Targets Ther. 6, 135–143 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Cameron, F. & Sanford, M. Ibrutinib: first global approval. Drugs 74, 263–271 (2014).

    CAS  PubMed  Google Scholar 

  16. Blair, J.A. et al. Structure-guided development of affinity probes for tyrosine kinases using chemical genetics. Nat. Chem. Biol. 3, 229–238 (2007).

    CAS  PubMed  Google Scholar 

  17. Cohen, M.S., Hadjivassiliou, H. & Taunton, J. A clickable inhibitor reveals context-dependent autoactivation of p90 RSK. Nat. Chem. Biol. 3, 156–160 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Honigberg, L.A. et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc. Natl. Acad. Sci. USA 107, 13075–13080 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pace, N.J. & Weerapana, E. Diverse functional roles of reactive cysteines. ACS Chem. Biol. 8, 283–296 (2013).

    CAS  PubMed  Google Scholar 

  21. Shin, N.Y., Liu, Q., Stamer, S.L. & Liebler, D.C. Protein targets of reactive electrophiles in human liver microsomes. Chem. Res. Toxicol. 20, 859–867 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cravatt, B.F., Wright, A.T. & Kozarich, J.W. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev. Biochem. 77, 383–414 (2008).

    CAS  PubMed  Google Scholar 

  23. Smaill, J.B. et al. Tyrosine kinase inhibitors. 17. Irreversible inhibitors of the epidermal growth factor receptor: 4-(phenylamino)quinazoline- and 4-(phenylamino)pyrido[3,2-d]pyrimidine-6-acrylamides bearing additional solubilizing functions. J. Med. Chem. 43, 1380–1397 (2000).

    CAS  PubMed  Google Scholar 

  24. Rostovtsev, V.V., Green, J.G., Fokin, V.V. & Sharpless, K.B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Edn Engl. 41, 2596–2599 (2002).

    CAS  Google Scholar 

  25. Speers, A.E., Adam, G.C. & Cravatt, B.F. Activity-based protein profiling in vivo using a copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125, 4686–4687 (2003).

    CAS  PubMed  Google Scholar 

  26. Mann, M. Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell Biol. 7, 952–958 (2006).

    CAS  PubMed  Google Scholar 

  27. Bachovchin, D.A. et al. Academic cross-fertilization by public screening yields a remarkable class of protein phosphatase methylesterase-1 inhibitors. Proc. Natl. Acad. Sci. USA 108, 6811–6816 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Adibekian, A. et al. Click-generated triazole ureas as ultrapotent in vivo–active serine hydrolase inhibitors. Nat. Chem. Biol. 7, 469–478 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hur, W. et al. Clinical stage EGFR inhibitors irreversibly alkylate Bmx kinase. Bioorg. Med. Chem. Lett. 18, 5916–5919 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pan, Z. et al. Discovery of selective irreversible inhibitors for Bruton's tyrosine kinase. ChemMedChem 2, 58–61 (2007).

    CAS  PubMed  Google Scholar 

  31. Woyach, J.A. et al. Bruton's tyrosine kinase (BTK) function is important to the development and expansion of chronic lymphocytic leukemia (CLL). Blood 123, 1207–1213 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tsou, H.R. et al. 6-Substituted-4-(3-bromophenylamino)quinazolines as putative irreversible inhibitors of the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor (HER-2) tyrosine kinases with enhanced antitumor activity. J. Med. Chem. 44, 2719–2734 (2001).

    CAS  PubMed  Google Scholar 

  33. Li, D. et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27, 4702–4711 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ponader, S. et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 119, 1182–1189 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, Y. et al. The EGFR T790M mutation in acquired resistance to an irreversible second-generation EGFR inhibitor. Mol. Cancer Ther. 11, 784–791 (2012).

    CAS  PubMed  Google Scholar 

  36. Simon, G.M., Niphakis, M.J. & Cravatt, B.F. Determining target engagement in living systems. Nat. Chem. Biol. 9, 200–205 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Nakayama, S. et al. A zone classification system for risk assessment of idiosyncratic drug toxicity using daily dose and covalent binding. Drug Metab. Dispos. 37, 1970–1977 (2009).

    CAS  PubMed  Google Scholar 

  38. Ahn, K. et al. Discovery and characterization of a highly selective FAAH inhibitor that reduces inflammatory pain. Chem. Biol. 16, 411–420 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Chang, J.W., Cognetta, A.B. III, Niphakis, M.J. & Cravatt, B.F. Proteome-wide reactivity profiling identifies diverse carbamate chemotypes tuned for serine hydrolase inhibition. ACS Chem. Biol. 8, 1590–1599 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tsuboi, K. et al. Potent and selective inhibitors of glutathione S-transferase omega 1 that impair cancer drug resistance. J. Am. Chem. Soc. 133, 16605–16616 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Nishino, M. et al. Hypothemicin, a fungal natural product, identifies therapeutic targets in Trypanosoma brucei. eLife 2, e00712 (2013).

    PubMed  PubMed Central  Google Scholar 

  42. Yang, P.Y. et al. Activity-based proteome profiling of potential cellular targets of Orlistat—an FDA-approved drug with anti-tumor activities. J. Am. Chem. Soc. 132, 656–666 (2010).

    CAS  PubMed  Google Scholar 

  43. Solca, F. et al. Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker. J. Pharmacol. Exp. Ther. 343, 342–350 (2012).

    CAS  PubMed  Google Scholar 

  44. Schwartz, P.A. et al. Covalent EGFR inhibitor analysis reveals importance of reversible interactions to potency and mechanisms of drug resistance. Proc. Natl. Acad. Sci. USA 111, 173–178 (2014).

    CAS  PubMed  Google Scholar 

  45. Herman, S.E. et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood 117, 6287–6296 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dasmahapatra, G. et al. The Bruton tyrosine kinase (BTK) inhibitor PCI-32765 synergistically increases proteasome inhibitor activity in diffuse large-B cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) cells sensitive or resistant to bortezomib. Br. J. Haematol. 161, 43–56 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rushworth, S.A. et al. BTK inhibitor ibrutinib is cytotoxic to myeloma and potently enhances bortezomib and lenalidomide activities through NF-κB. Cell. Signal. 25, 106–112 (2013).

    CAS  PubMed  Google Scholar 

  48. Tai, Y.T. et al. Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma. Blood 120, 1877–1887 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hsu, K.L. et al. DAGLβ inhibition perturbs a lipid network involved in macrophage inflammatory responses. Nat. Chem. Biol. 8, 999–1007 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Weerapana, E., Simon, G.M. & Cravatt, B.F. Disparate proteome reactivity profiles of carbon electrophiles. Nat. Chem. Biol. 4, 405–407 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hulce, J.J., Cognetta, A.B., Niphakis, M.J., Tully, S.E. & Cravatt, B.F. Proteome-wide map** of cholesterol-interacting proteins in mammalian cells. Nat. Methods 10, 259–264 (2013).

    PubMed  PubMed Central  Google Scholar 

  52. Martin, B.R., Wang, C., Adibekian, A., Tully, S.E. & Cravatt, B.F. Global profiling of dynamic protein palmitoylation. Nat. Methods 9, 84–89 (2012).

    CAS  Google Scholar 

  53. Washburn, M.P., Wolters, D. & Yates, J.R. III. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247 (2001).

    CAS  PubMed  Google Scholar 

  54. Vichai, V. & Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 1, 1112–1116 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Simon for assistance with proteomic data analysis. This work was supported by the National Institutes of Health (CA087660), Pfizer and the Skaggs Institute for Chemical Biology.

Author information

Authors and Affiliations

Authors

Contributions

B.R.L., L.R.W., M.M.D. and B.F.C. designed the experiments; B.R.L., L.R.W. and M.M.D. performed the experiments and analyzed data; C.J. assisted with experiments; C.W. and J.J.H. assisted with data analysis; J.D., A.M.G., E.C.H., T.O.J., J.C.K., S.N., L.R.R., M.E.S., B.W., L.O.W. and M.M.H. provided intellectual input for probe design, experimental strategy and interpretation of proteomic data. M.M.H. and B.F.C. provided inter-institutional leadership and coordination; and B.R.L., L.R.W., M.M.H. and B.F.C. wrote the manuscript.

Corresponding authors

Correspondence to Matthew M Hayward or Benjamin F Cravatt.

Ethics declarations

Competing interests

The authors declare competing financial interests. J.D., A.M.G., E.C.H., T.O.J., J.C.K., S.N., L.R.R., M.E.S., B.W., L.O.W. and M.M.H. are employees of Pfizer. The research was partially funded by Pfizer.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3, Supplementary Figures 1–12 and Supplementary Note. (PDF 29097 kb)

Supplementary Table 3

Full proteomic data sets for SILAC-ABPP studies (XLSX 15605 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanning, B., Whitby, L., Dix, M. et al. A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. Nat Chem Biol 10, 760–767 (2014). https://doi.org/10.1038/nchembio.1582

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1582

  • Springer Nature America, Inc.

This article is cited by

Navigation