Log in

Purification and characterization of chitinase from the integument of the Mediterranean flour moth, Ephestia kuehniella (Lepidoptera: Pyralidae) and its antibacterial role

  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Chitinases are found in species from all kingdoms, including Kingdom Animalia. We purified chitinase, poly [1,4-(N-acetyl-β-D-glucosaminide)] glycanohydrolase, by cation exchange chromatography on SP-Sepharose from the integument of a lepidopteran, the Mediterranean flour moth, Ephestia kuehniella Zeller, and further characterized it. Ephestia kuehniella chitinase has similar properties to other insect chitinases, with respect to the molecular mass. Its molecular mass was 79.7 kDa by sodium dodecyl sulfate Polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH and temperature for activity were 6 and 40 °C, respectively. The purified enzyme exhibited stability at a pH range from 4.5 to 8.0 and showed high sensitivity to Co2+, Mn2+, Ca2+, Hg2+ and Ag+. The Km and Vmax values of E. kuehniella chitinase were, respectively, 3.98 mg/mL and 7.11 μmol/min/mg for colloidal chitin. In comparison to the values determined for the substrate affinity, the enzyme had a 2.36-fold higher affinity for Carboxymethyl-Chitin-Remazol Brilliant Violet (CM-Chitin-RBV) as a soluble substrate. We examined the antibacterial effect of E. kuehniella chitinase on the growth of both Gram-positive and Gram-negative bacteria. The enzyme inhibited the growth of Bacillus subtilis, Bacillus thuringiensis and Escherichia coli, where the average diameter of inhibition zone was 20, 23 and 19 mm, respectively. The antimicrobial effect and chitinase activity strengthen the hypothesis that the enzyme could be used in biological control against plant pests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Banat B. M. A., Kameyama Y, Yoshioka T. and Koga D. (1999) Purification and characterization of a 54 kDa chitinase from Bombyx mori. Insect Biochemistry and Molecular Biology 29, 537–547.

    Article  Google Scholar 

  • Abdel-Banat B. M. A., Zhou W., Karasuda S. and Koga D. (2002) Analysis of hydrolytic activity of a 65-kDa chitinase from the silkworm, Bombyx mori. Bioscience, Biotechnology and Biochemistry 66, 1119–1122.

    Article  CAS  Google Scholar 

  • Arakane Y and Muthukrishnan S. (2010) Insect chitinase and chitinase-like proteins. Cellular and Molecular Life Sciences 67, 201–216.

    Article  CAS  Google Scholar 

  • Arakane Y, Zhu Q., Matsumiya M., Muthukrishnan S. and Kramer K. J. (2003) Properties of catalytic, linker and chitin-binding domains of insect chitinase. Insect Biochemistry and Molecular Biology 33, 631–648.

    Article  CAS  Google Scholar 

  • Bhattacharya D., Nagpure A. and Gupta R. K. (2007) Bacterial chitinases: Properties and potential. Critical Reviews in Biotechnology 27, 21–28.

    Article  CAS  Google Scholar 

  • Bradford M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248–254.

    Article  CAS  Google Scholar 

  • Cantarel B. L., Coutinho P. M., Rancurel C, Bernard T., Lombard V. and Henrissat B. (2009) The carbohydrate-active enzymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Research 37, D233–D238.

    Article  CAS  Google Scholar 

  • Das S., Van Dellen K, Bulik D., Magnelli P., Cui J., Head J., Robbins P. W. and Samuelson J. (2006) The cyst wall of Entamoeba invadens contains chitosan (deacetylated chitin). Molecular and Biochemical Parasitology 148, 86–92.

    Article  CAS  Google Scholar 

  • Ehrlich H., Krautter M., Hanke T, Simon P., Knieb C, Heinemann S. and Worch H. (2007a) First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). journal of Experimental Zoology Part B 308, 473–483.

    Article  Google Scholar 

  • Ehrlich H, Maldonado M., Spindler K.-d., Eckert C., Hanke T, Born R., Goebel C., Simon P., Heinemann S. and Worch H. (2007b) First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (Demospongia: Porifera). Journal of Experimental Zoology Part B 308, 347–356.

    Article  Google Scholar 

  • Esseling J. J. and Emons A. M. C. (2004) Dissection of Nod factor signalling in legumes: Cell biology, mutants and pharmacological approaches. Journal of Microscopy 214, 104–113.

    Article  CAS  Google Scholar 

  • Fukamizo T. (2000) Chitinolytic enzymes: Catalysis, substrate binding, and their application. Current Protein & Peptide Science 1, 105–124. doi: 10.2174/1389203003381450.

    Article  CAS  Google Scholar 

  • Genta F. A., Blanes L., Cristofoletti P. T, do Lago C. L., Terra W. R. and Ferreira C. (2006) Purification, characterization and molecular cloning of the major chitinase from Tenebrio molitor larval midgut. Insect Biochemistry and Molecular Biology 36, 789–800.

    Article  CAS  Google Scholar 

  • Haider S. K, Maity C, Jana A., Pati B. R. and Keshab C. M. (2012) Chitinolytic enzymes from the newly isolated Aeromonas hydrophila SBK1: Study of the mosquitocidal activity. BioControl 57, 441–449.

    Article  Google Scholar 

  • Hegedus D., Erlandson M., Gillott C. and Toprak U. (2009) New insights into peritrophic matrix synthesis, architecture, and function. Annual Review of Entomology 54, 285–302.

    Article  CAS  Google Scholar 

  • Hunt S. and El Sherief A. (1990) Aperiodic structure in the ‘pen’ chitin of the squid Loligo vulgaris. Tissue and Cell 22, 191–197.

    Article  CAS  Google Scholar 

  • Jagadeeswari S. J. and Panneer Selvam K. (2012) Optimization of chitinase production by soil Streptomyces sp. SJKP9. Journal of Academia and Industrial Research 1, 332–336.

    Google Scholar 

  • Jeuniaux C. and Voss-Foucart M. F (1991) Chitin biomass and production in the marine environment. Biochemical Systematics and Ecology 19, 347–356.

    Article  CAS  Google Scholar 

  • Kabir K. E., Hirowatari D., Watanabe K. and Koga D. (2006a) Purification and characterization of a novel isozyme of chitinase from Bombyx mori. Bioscience, Biotechnology, and Biochemistry 70, 252–262. doi: 10.1271/bbb.70.252

    Article  CAS  Google Scholar 

  • Kabir K. E., Sugimoto H, Tado H, Endo K., Yamanaka A., Tanaka S. and Koga D. (2006b) Effect of Bombyx mori chitinase against Japanese pine sawyer (Monochamus alternatus) adults as a biopesticide. Bioscience, Biotechnology, and Biochemistry 70, 219–229. doi: 10.1271/bbb.70.219

    Article  CAS  Google Scholar 

  • Khan M. A., Hamid R., Ahmad M., Abdin M. Z. and Javed S. (2010) Optimization of culture media for enhanced chitinase production from a novel strain of Stenotrophomonas maltophilia using response surface methodology. Journal of Microbiology and Biotechnology 20, 1597–1602.

    Article  CAS  Google Scholar 

  • Koga D., Jilka J. and Kramer K. J. (1983) Insect endochitinases: Glycoproteins from moulting fluid, integument and pupal haemolymph of Manduca sexta L. Insect Biochemistry 13, 295–305.

    Article  CAS  Google Scholar 

  • Koga D., Sasaki Y, Uchiumi Y, Hirai N, Arakene Y and Nagamatsu Y (1997) Purification and characterization of Bombyx mori chitinases. Insect Biochemistry and Molecular Biology 27, 757–767.

    Article  CAS  Google Scholar 

  • Kondo K., Matsumoto M., Kojo A. and Maeda R. (2002) Purification and characterization of chitinase from pupae of Vieris rapae crucivora (Boisduval). Journal of Chemical Engineering of Japan 35, 241–246.

    Article  CAS  Google Scholar 

  • Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  CAS  Google Scholar 

  • Lee Y. S., Park I. H., Yoo J. S., Chung S. Y., Lee Y. C, Cho Y S., Ahn S. C, Kim C. M. and Choi Y. L. (2007) Cloning, purification, and characterization of chitinase from Bacillus sp. DAU101. Bioresource Technology 98, 2734–2741.

    Article  CAS  Google Scholar 

  • Linder M. and Teeri T. T. (1997) The roles and function of cellulose-binding domains. Journal of Biotechnology 57, 15–28.

    Article  CAS  Google Scholar 

  • Mathur A., Rawat A., Bhatt G., Baweja S., Ahmad F., Grover A., Madhav K., Dhand M., Mathur D., Verma S. K., Singh S. K. and Dua V. K. (2011) Isolation of Bacillus producing chitinase from soil: Production and purification of chito-oligosaccharides from chitin extracted from fresh water crustaceans and antimicrobial activity of chitinase. Recent Research in Science and Technology 3(11), 01–06.

    CAS  Google Scholar 

  • Merzendorfer H. (2006) Insect chitin synthases: A review. Journal of Comparative Physiology B 176, 1–15.

    Article  CAS  Google Scholar 

  • Merzendorfer H. (2013) Insect-derived chitinases. Advances in Biochemical Engineering/Biotechnology 136, 19–50.

    Article  CAS  Google Scholar 

  • Milewski S., O’Donnell R. W. and Gooday G. W. (1992) Chemical modification studies of the active centre of Candida albicans chitinase and its inhibition by allosamidin. Journal of General Microbiology 138, 2545–2550.

    Article  CAS  Google Scholar 

  • Miller G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31, 426–428.

    Article  CAS  Google Scholar 

  • Reynolds S. E. and Samuels R. I. (1996) Physiology and biochemistry of insect moulting fluid. Advances in Insect Physiology 26, 157–232.

    Article  CAS  Google Scholar 

  • Roncero C. (2002) The genetic complexity of chitin synthesis in fungi. Current Genetics 41, 367–378.

    Article  CAS  Google Scholar 

  • Ruiz-Herrera J. and Ortiz-Castellanos L. (2010) Analysis of the phylogenetic relationships and evolution of the cell walls from yeasts and fungi. FEMS Yeast Research 10, 225–243.

    Article  CAS  Google Scholar 

  • Samuels R. I. and Paterson I. C. (1995) Cuticle degrading proteases from insect moulting fluid and culture filtrates of entomopathogenic fungi. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 110, 661–669.

    Article  CAS  Google Scholar 

  • Wang S. L., Hsiao W. J. and Chang W. T. (2002) Purification and characterization of an antimicrobial chitinase extracellularly produced by Monascus purpureus CCRC31499 in a shrimp and crab shell powder medium. Journal of Agricultural and Food Chemistry 50, 2249–2255.

    Article  CAS  Google Scholar 

  • Weiss I. M., Schönitzer V., Eichner N. and Sumper M. (2006) The chitin synthase involved in marine bivalve mollusk shell formation contains a myosin domain. FEBS Letters 580, 1846–1852.

    Article  CAS  Google Scholar 

  • Zhang H. B., Liu M. Y, Tian Y J. and Hu X. Q. (2011) Comparative characterization of chitinases from silkworm (Bombyx mori) and bollworm (Helicoverpa armígera). Cell Biochemistry and Biophysics 61, 267–275.

    Article  CAS  Google Scholar 

  • Zhang Y, Foster J. M., Nelson L. S., Ma D. and Carlow C. K. S. (2005) The chitin synthase genes chs-1 and chs-2 are essential for C. elegans development and responsible for chitin deposition in the eggshell and pharynx, respectively. Developmental Biology 285, 330–339.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Mehranian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehranian, M., Farshbaf Pourabad, R., Sokhandan-Bashir, N. et al. Purification and characterization of chitinase from the integument of the Mediterranean flour moth, Ephestia kuehniella (Lepidoptera: Pyralidae) and its antibacterial role. Int J Trop Insect Sci 38, 105–116 (2018). https://doi.org/10.1017/S1742758417000364

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S1742758417000364

Key words

Navigation