Log in

Experimental and analytical research on relationship between tool life and vibration in cutting process

  • Original Research Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

New identification and evaluation techniques for machining systems lead to an increase in the efficiency of a production system. This paper presents relationship between tool life, design features, fatigue strength and parameters of vibrations. To cope with this objective, vibration influence on tool wear is assessed, which considers the phase shift of vibration in different coordinates and forces on rake and rear faces of the tool. Tool life is predicted based on fatigue strength of tool material and parameters of tool vibrations. Static and dynamic characteristics of cutting tools during different machining conditions are analyzed using different cutting tools. Test results of cutting tools with different clam** types during static, dynamic and cutting processes, together with the simulation results suggest a relationship between the characteristics of the tool, the elastic system vibrations and tool life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Otto, G. Radons, Application of spindle speed variation for chatter suppression in turning, CIRP J. Manuf. Sci. Technol. 6 (2013) 102–109.

    Article  Google Scholar 

  2. X. **ao, K. Zheng, W. Liao, H. Meng, Study on cutting force model in ultrasonic vibration assisted side grinding of zirconia ceramics, Int. J. Mach. Tools Manuf. 104 (2016) 58–67.

    Article  Google Scholar 

  3. B.S. Prasad, M.P. Babu, Correlation between vibration amplitude and tool wear in turning: numerical and experimental analysis, Eng. Sci. Technol. Int. J. 20 (2017) 197–211.

    Google Scholar 

  4. Y.S. Tarng, H.T. Young, B.Y. Lee, An analytical model of chatter vibration in metal cutting, Int. J. Mach. Tools Manuf. 34 (2) (1994) 183–197.

    Article  Google Scholar 

  5. M. Kayhan, E. Budak, An experimental investigation of chatter effects on tool life, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 223 (11) (2009) 1455–1463.

    Article  Google Scholar 

  6. Y. Gaoa, R. Suna, J. Leopold, Analysis of cutting stability in vibration assisted machining using an analytical predictive force model, Procedia CIRP 31 (2015) 515–520.

    Article  Google Scholar 

  7. N. Qin, Z. Pei, C. Treadwell, D. Guo, Physics-based predictive cutting force model in ultrasonic-vibration-assisted grinding for titanium drilling, J. Manuf. Sci. Eng. 131 (4) (2009) 041011–41019.

    Article  Google Scholar 

  8. A.K. Ghani, I.A. Choudhury, Husni, Study of tool life, surface roughness and vibration in machining nodular cast iron with ceramic tool, J. Mater. Process. Technol. 127 (2002) 17–22.

    Google Scholar 

  9. A.A. Thakre, S. Soni, Modeling of burr size in drilling of aluminum silicon carbide composites using response surface methodology, Eng. Sci. Technol. Int. J. 19 (3) (2016) 1199–1205.

    Article  Google Scholar 

  10. G. Quintana, J. Ciurana, Chatter in machining processes: a review, Int. J. Mach. Tools Manuf. 51 (2011) 363–376.

    Article  Google Scholar 

  11. N. Fang, P.S. Pai, S. Mosquea, Effect of tool edge wear on the cutting forces and vibrations in high-speed finish machining of Inconel 718: an experimental study and wavelet transform analysis, Int. J. Adv. Manuf. Technol. 52 (2011) 65–77.

    Article  Google Scholar 

  12. F.W. Taylor, On the Art of Cutting Metals, American Society of Mechanical Engineers, New York, 1907.

    Google Scholar 

  13. J.C. Aurich, M. Zimmermann, S. Schindler, P. Steinmann, Analysis of the machining accuracy when dry turning via experiments and finite element simulations, Prod. Eng. Res. Dev. 8 (2014) 41–50.

    Article  Google Scholar 

  14. S. Jeyakumar, K. Marimuthu, T. Ramachandran, Prediction of vibration amplitude and surface roughness in machining of Al6061 metal matrix composites by response surface methodology, Int. J. Mech. Mater. Eng. 7 (3) (2013) 222–231.

    Google Scholar 

  15. V.A. Kudinov, Dynamic of Machine Tools, Mashinostroenie, Moscow, 1967.

    Google Scholar 

  16. D.M. Letun, Study of the process of turning using diamond and ruby tools. Moscow, (dissertation), 1967.

  17. I.V. Kragelski, M.N. Dobichin, B.C. Kombalov, Basics Calculations for Friction and Wear, Mashinostroenie, Moscow, 1977.

    Google Scholar 

  18. I.V. Kragelski, E.F. Nepovniashi, G.M. Kharach, Fatigue Mechanism and a Brief Methodology for the Analytical Evaluation of the Wear Rate of Friction Surfaces in Sliding, AN SSSR, Moscow, 1967.

    Google Scholar 

  19. A.P. Markopoulos, Finite Element Method in Machining Processes, Springer-Verlag, London, 2013.

    Book  Google Scholar 

  20. P.I. Orlov, Basics of Designing, Mashinostroenie, Moscow, 1988.

    Google Scholar 

  21. M.S. Blanter, I.S. Golovin, H. Neuhäuser, H.-R. Sinning, Internal Friction in Metallic Materials, Springer, Berlin/Heidelberg/New York, 2007.

    Book  Google Scholar 

  22. I.V. Babakov, Vibration Theory, Nauka, Moscow, 1968.

    Google Scholar 

  23. M. Siddhpura, R. Paurobally, A review of chatter vibration research in turning, Int. J. Mach. Tools Manuf. 61 (2012) 27–47.

    Article  Google Scholar 

  24. P.S. Paul, A.S. Varadarajan, R. Robinson Gnanadurai, Study on the influence of fluid application parameters on tool vibration and cutting performance during turning of hardened steel, Eng. Sci. Technol. Int. J. 19 (2016) 241–253.

    Google Scholar 

  25. M.A. Elbestawi, F. Ismail, R. Du, B.C. Ullagaddi, Modelling machining dynamics including dam** in the tool–workpiece interface, J. Eng. Ind. 116 (1994) 435–439.

    Article  Google Scholar 

  26. S.M. Son, H. Lim, J. Ahn, The effect of vibration cutting on minimum cutting thickness, Int. J. Mach. Tools Manuf. 46 (2006) 2066–2072.

    Article  Google Scholar 

  27. N.K. Chandiramani, T. Pothala, Dynamics of 2-d of regenerative chatter during turning, J. Sound Vib. 290 (2006) 448–464.

    Article  Google Scholar 

  28. A.G. Mamalis, J. Kundrak, A. Markopoulos, D.E. Manalakos, On the finite modeling of high speed hard turning, Int. J. Adv. Manuf. Technol. 38 (2008) 441–446.

    Article  Google Scholar 

  29. P. Thangavel, V. Selladurai, R. Shanmugam, Application of response surface methodology for predicting flank wear in turning operation, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 220 (2006) 997–1003.

    Article  Google Scholar 

  30. C.F. Bisu, P. Darnis, A. Gerard, J.Y. Knevez, Displacements analysis of self-excited vibrations in turning, Int. J. Adv. Manuf. Technol. 44 (2008) 1–16.

    Article  Google Scholar 

  31. A.V. Dassanayake, C.S. Suh, On nonlinear cutting response and tool chatter in turning operation, Commun. Nonlinear Sci. Numer. Simul. 13 (2008) 979–1001.

    Article  Google Scholar 

  32. S. Hoppe, Experimental and numerical analysis of chip formation in metal cutting, (Dissertation), RWTH Aachen, 2004.

  33. H. Puls, F. Klocke, D. Lung, Experimental investigation on friction under metal cutting conditions, Wear 310 (2014) 63–71.

    Article  Google Scholar 

  34. M. Sekar, J. Srinivas, K. Kotaiah, S. Yang, Stability analysis of turning process with tailstock-supported workpiece, Int. J. Adv. Manuf. Technol. 43 (2009) 862–871.

    Article  Google Scholar 

  35. N. Suzuki, K.N.E. Shamoto, K. Yoshino, Effect of cross transfer function on chatter stability in plunge cutting, J. Adv. Mech. Des. Syst. Manuf. 4 (2010) 883–891.

    Article  Google Scholar 

  36. T. Sisson, R. Kegg, An explanation of low speed chatter effects, ASME J. Eng. Ind. 91 (1969) 951.

    Article  Google Scholar 

  37. G.H. Lim, Tool-wear monitoring in machine turning, J. Mater. Process. Technol. 51 (1995) 25–36.

    Article  Google Scholar 

  38. H. Jamshidi, M.J. Nategh, Theoretical and experimental investigation of the frictional behavior of the tool–chip interface in ultrasonic-vibration assisted turning, Int. J. Adv. Manuf. Technol. 65 (2013) 1–7.

    Article  Google Scholar 

  39. S. Amini, H. Soleimanimehr, M.J. Nategh, A. Abudollah, M.H. Sadeghi, FEM analysis of ultrasonic-vibration-assisted turning and the vibratory tool, J. Mater. Process. Technol. 201 (1–3) (2008) 43–47.

    Article  Google Scholar 

  40. N. Ahmed, A.V. Mitrofanov, V.I. Babitsky, V.V. Silberschmidt, Analysis of forces in ultrasonically assisted turning, J. Sound Vib. 308 (3–5) (2007) 845–854.

    Article  Google Scholar 

  41. K. Deibel, K. Wegener, Friction effects between ultrasonic cutting blade and sheet stack, IEEE Int. Ultrason. Symp. Proc. 308 (3–5) (2012) 2663–2666.

    Google Scholar 

  42. M.S. Fofana, K.C. Ee, I.S. Jawahir, Machining stability in turning operation when cutting with a progressively worn tool insert, Wear 255 (2003) 1395–1403.

    Article  Google Scholar 

  43. K.Y. Hwang, C.M. Lee, A review on the preload technology of the rolling bearing for the spindle of machine tools, Int. J. Precis. Eng. Manuf. 11 (3) (2010) 491–498.

    Article  Google Scholar 

  44. V.A. Rogov, S. Ghorbani, A.N. Popikov, N.I. Polushin, Improvement of cutting tool performance during machining process by using different shim, Arch. Civil Mech. Eng. 17 (3) (2017) 694–710.

    Article  Google Scholar 

  45. Wojciech Zebala, The influence of tool stiffness on the dimensional accuracy in titanium alloy milling, Key Eng. Mater. (Zurich) 686 (February) (2016) 108–113.

    Article  Google Scholar 

  46. G. Struzikiewicz, T. Otko, Dependence of shape deviations and surface roughness in the hardened steel turning, Key Eng. Mater. 581 (2014) 443–448.

    Article  Google Scholar 

  47. Y. Altintas, M. Eynian, H. Onozuka, Identification of dynamic cutting force coefficients and chatter stability with process dam**, CIRP Ann.—Manuf. Technol. 57 (2008) 371–374.

    Article  Google Scholar 

  48. E. Budak, L. Tunc, Identification and modeling of process dam** in turning and milling using a new approach, CIRP Ann.—Manuf. Technol. 59 (1) (2010) 403–408.

    Article  Google Scholar 

  49. S. Lin, M. Hu, Low vibration control system in turning, Int. J. Mach. Tools Manuf. 32 (1992) 629–640.

    Article  Google Scholar 

  50. E. Brinksmeier, O. Riemer, Measurement of optical surfaces generated by diamond turning, Int. J. Mach. Tools Manuf. 38 (1998) 699–705.

    Article  Google Scholar 

  51. A. Archenti, A computational framework for control of machining system capability, (Ph.D. thesis), KTH Royal Institute of Technology, 2011.

  52. L. Daghini, Improving machining system performance through designed-in dam**: modelling, analysis and design solutions, (Ph.D. thesis), KTH Royal Institute of Technology, 2012.

  53. N.H. Hanna, S.A. Tobias, A theory of nonlinear regenerative chatter, Trans. ASME—J. Eng. Ind. 96 (1974) 247–255.

    Article  Google Scholar 

  54. H. Moradi, M.R. Movahhedy, G. Vossoughi, Dynamics of regenerative chatter and internal resonance in milling process with structural and cutting force nonlinearities, J. Sound Vib. 331 (2012) 3844–3865.

    Article  Google Scholar 

  55. G. Stepan, T. Insperger, R. Szalai, Delay, parametric excitation, and the nonlinear dynamics of cutting process, Int. J. Bifurc. Chaos 15 (9) (2005) 2783–2798.

    Article  MATH  Google Scholar 

  56. S.A. Tobias, Machine Tool Vibration, Blackie and Sons Ltd., 1965.

  57. M. Thomas, Y. Beauchamp, Statistical investigation of modal parameters of cutting tools in dry turning, Int. J. Mach. Tools Manuf. 43 (2003) 1093–1106.

    Article  Google Scholar 

  58. A. Shanker, An analysis of chatter vibration while turning slender work-pieces between centres, Ann. CIRP 25 (1976) 273–276.

    Google Scholar 

  59. B.E. Clancy, B. Rao, Y.C. Shin, Time Domain Chatter Prediction Including Tool Wear Effects During Face Turning of Nickel Based Super Alloys, Society of Manufacturing Engineers, West Lafayette, ID, United states, 2002, pp. 1–8.

    Google Scholar 

  60. J.A. Arsecularatnea, L.C. Zhang, C. Montross, Wear and tool life of tungsten carbide, PCBN and PCD cutting tools, Int. J. Mach. Tools Manuf. 46 (2006) 482–491.

    Article  Google Scholar 

  61. J.A. Arsecularatne, Prediction of tool life for restricted contact and grooved tools based on equivalent feed, Int. J. Mach. Tools Manuf. 44 (2004) 1271–1282.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Ghorbani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, S., Kopilov, V.V., Polushin, N.I. et al. Experimental and analytical research on relationship between tool life and vibration in cutting process. Archiv.Civ.Mech.Eng 18, 844–862 (2018). https://doi.org/10.1016/j.acme.2018.01.007

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.acme.2018.01.007

Keywords

Navigation