Log in

Structural-nanomechanical property correlation of shallow water shrimp (Pandalus platyceros) exoskeleton at elevated temperature

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

This investigation reports the nanomechanical properties of shallow water shrimp exoskeleton at temperatures ranging from 30 °C to 80 °C measured using nanoindentation experiments. Scanning Electron Microscopy (SEM) measurements suggest that the shrimp exoskeleton has the Bouligand structure in its layers, a key characteristic of the crustaceans. The thickness of the layers and packing density are found to be different from that of lobsters and crabs reported earlier in the literature. Mechanical properties at high temperatures are determined using micro materials nanoindentation test set up combined with the hot stage. The properties measured during nanoindentation test are corrected for the creep and thermal drift during the experiments. The reduced modulus values are found to be around 28 GPa at 30 °C that reduces to approximately 24 GPa at 80 °C. The hardness values also decrease from 1.6 GPa at 30 °C to around 1.2 GPa at 80 °C. The indentation size effect is found to be absent at all temperatures. Creep mechanisms of polymers like materials and its temperature dependence are discussed to give more insight into the deformation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boßelmann F, Romano P, Fabritius H, Raabe D, Epple M. The composition of the exoskeleton of two crustacea: The American lobster Homarus americanus and the edible crab Cancer pagurus. Thermochimica Acta, 2007, 463, 65–68.

    Article  Google Scholar 

  2. Raabe D, Romano P, Sachs C, Fabritius H, Al-Sawalmih A, Yi S-B, Servos G, Hartwig H G. Microstructure and crystallographic texture of the chitin-protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus. Materials Science and Engineering: A, 2006, 421, 143–153.

    Article  Google Scholar 

  3. Raabe D, Sachs C, Romano P. The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Materialia, 2005, 53, 4281–4292.

    Article  Google Scholar 

  4. Seki Y, Schneider M S, Meyers M A. Structure and mechanical behavior of a toucan beak. Acta Materialia, 2005, 53, 5281–5296.

    Article  Google Scholar 

  5. Lian J, Wang J. Microstructure and mechanical properties of dungeness crab exoskeletons. In: Proulx T, ed., Mechanics of Biological Systems and Materials, Springer, New York, 2011, 93–99.

    Google Scholar 

  6. Melnick C A, Chen Z, Mecholsky J J. Hardness and toughness of exoskeleton material in the stone crab, Menippe mercenaria. Journal of Materials Research, 1996, 11, 2903–2907.

    Article  Google Scholar 

  7. Mayer G. New classes of tough composite materials-Lessons from natural rigid biological systems. Materials Science and Engineering: C, 2006, 26, 1261–1268.

    Article  Google Scholar 

  8. Mayer G. New toughening concepts for ceramic composites from rigid natural materials. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 670–681.

    Article  Google Scholar 

  9. Hepburn H R, Joffe I, Green N, Nelson K J. Mechanical properties of a crab shell. Comparative Biochemistry and Physiology Part A: Physiology, 1975, 50, 551–IN13.

    Article  Google Scholar 

  10. Barthelat F, Rim J E, Espinosa H D. A review on the structure and mechanical properties of mollusk shells-perspectives on synthetic biomimetic materials. Applied Scanning Probe Methods XIII, Springer, 2009, 17–44.

    Chapter  Google Scholar 

  11. Bouligand Y. Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue and Cell, 1972, 4, 189–217.

    Article  Google Scholar 

  12. Giraud-Guille M M. Fine structure of the chitin-protein system in the crab cuticle. Tissue and Cell, 1984, 16, 75–92.

    Article  Google Scholar 

  13. Chen P Y, Lin AY-M, McKittrick J, Meyers M A. Structure and mechanical properties of crab exoskeletons. Acta Bio-materialia, 2008, 4, 587–596.

    Article  Google Scholar 

  14. Chen B, Peng X, Wang J G, Wu X. Laminated microstructure of Bivalva shell and research of biomimetic ceramic/polymer composite. Ceramics International, 2004, 30, 2011–2014.

    Article  Google Scholar 

  15. Shahidi F, Synowiecki J. Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards. Journal of Agricultural and Food Chemistry, 1991, 39, 1527–1532.

    Article  Google Scholar 

  16. Islam M, Masum S, Rahman M, Moll M, Shaikh A, Roy S. Preparation of chitosan from shrimp shell and investigation of its properties. International Journal of Basic and Applied Sciences, 2011, 11, 116–30.

    Google Scholar 

  17. Rødde R H, Einbu A, Vårum K M. A seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis). Carbohydrate Polymers, 2008, 71, 388–393.

    Article  Google Scholar 

  18. Ibrahim H M, Salama M F, El-Banna H A. Shrimp’s waste: Chemical composition, nutritional value and utilization. Food/Nahrung, 1999, 43, 418–423.

    Article  Google Scholar 

  19. Weaver J, Milliron G W, Miserez A, Evans-Lutterodt K, Herrera S, Gallana I, Mershon W J, Swanson B, Zavattieri P, Dimasi E, Kisailus D. The Stomatopod Dactyl club: A Formidable damage-tolerant biological hammer. Science, 2012, 336, 1275–1280.

    Article  Google Scholar 

  20. Andresen I L, Smidsørod O. Temperature dependence of the elastic properties of alginate gels. Carbohydrate Research, 1977, 58, 271–279.

    Article  Google Scholar 

  21. Lagakos N, Jarzynski J, Cole J, Bucaro J. Frequency and temperature dependence of elastic moduli of polymers. Journal of applied physics, 1986, 59, 4017–4031.

    Article  Google Scholar 

  22. Wang W Y, Liu B, Kodur V. Effect of temperature on strength and elastic modulus of high-strength steel. Journal of Materials in Civil Engineering, 2013, 25, 174–182.

    Article  Google Scholar 

  23. Zacharias J. The temperature dependence of Young’s modulus for nickel. Physical Review, 1933, 44, 116.

    Article  Google Scholar 

  24. Farraro R, McLellan R. Temperature dependence of the Young’s modulus and shear modulus of pure nickel, platinum, and molybdenum. MTA, 1977, 8, 1563–1565.

    Article  Google Scholar 

  25. Young G, Garofalo R, Peters S, Harmer O. The effect of temperature on soft contact lens modulus and diameter. Eye & Contact Lens, 2011, 37, 337–341.

    Article  Google Scholar 

  26. Latella B A, Humphries S R. Young’s modulus of a 2.25Cr-1Mo steel at elevated temperature. Scripta materialia, 2004, 51, 635–639.

    Article  Google Scholar 

  27. Wang C A, Huang Y, Zan Q, Guo H, Cai S. Biomimetic structure design-a possible approach to change the brittleness of ceramics in nature. Materials Science and Engineering: C, 2000, 11, 9–12.

    Article  Google Scholar 

  28. Zhou B L. Bio-inspired study of structural materials. Materials Science and Engineering: C, 2000, 11, 13–18.

    Article  Google Scholar 

  29. Luz G M, Mano J F. Biomimetic design of materials and biomaterials inspired by the structure of nacre. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 367, 1587–1605.

    Article  Google Scholar 

  30. Oliver W C, Pharr G M. Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 1992, 7, 1564–1583.

    Article  Google Scholar 

  31. Pharr G. Measurement of mechanical properties by ultra-low load indentation. Materials Science and Engineering: A, 1998, 253, 151–159.

    Article  Google Scholar 

  32. Gan M, Tomar V. Scale and temperature dependent creep modeling and experiments in materials. JOM Journal of the Minerals, Metals, and Materials Society, 2011, 63, 27–34.

    Article  Google Scholar 

  33. Gan M, Tomar V. Role of length scale and temperature in indentation induced creep behavior of polymer derived Si-C-O ceramics. Materials Science and Engineering: A, 2010, 527, 7615–7623.

    Article  Google Scholar 

  34. Feng G, Ngan A. The effects of creep on elastic modulus measurement using nanoindentation. Materials Research Society, Boston, MA, 2001.

    Google Scholar 

  35. Ngan A, Tang B. Viscoelastic effects during unloading in depth-sensing indentation. Journal of Materials Research, 2002, 17, 2604–2610.

    Article  Google Scholar 

  36. Feng G, Ngan A. Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. Journal of materials research, 2002, 17, 660–668.

    Article  Google Scholar 

  37. Koyanagi J, Yoneyama S, Nemoto A, Melo JDD. Time and temperature dependence of carbon/epoxy interface strength. Composites Science and Technology, 2010, 70, 1395–1400.

    Article  Google Scholar 

  38. Tilton Jr R F, Dewan J C, Petsko G A. Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320 K. Biochemistry, 1992, 31, 2469–2481.

    Article  Google Scholar 

  39. Frauenfelder H, Petsko G A, Tsernoglou D. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature, 1979, 280, 558–563.

    Article  Google Scholar 

  40. Bull H B, Breese K. Thermal stability of proteins. Archives of Biochemistry and Biophysics, 1973, 158, 681–686.

    Article  Google Scholar 

  41. Bischof J C, He X. Thermal stability of proteins. Annals of the New York Academy of Sciences, 2006, 1066, 12–33.

    Article  Google Scholar 

  42. Sherby O D, Burke P M. Mechanical behavior of crystalline solids at elevated temperature. Progress in Materials Science, 1968, 13, 323–390.

    Article  Google Scholar 

  43. Tuttle M E, Brinson H F. Prediction of the long-term creep compliance of general composite laminates. Experimental Mechanics, 1986, 26, 89–102.

    Article  Google Scholar 

  44. Raghavan J, Meshii M. Creep of polymer composites. Composites Science and Technology, 1998, 57, 1673–1688.

    Article  Google Scholar 

  45. Saheb D N, Jog J. Natural fiber polymer composites: A review. Advances in polymer technology, 1999, 18, 351–363.

    Article  Google Scholar 

  46. Ma C C M, Tai N H, Wu S H, Lin S H, Wu J F, Lin J M. Creep behavior of carbon-fiber-reinforced polyetheretherketone (PEEK) [±45] 4s laminated composites (I). Composites Part B: Engineering, 1997, 28, 407–417.

    Article  Google Scholar 

  47. Schoeck G. The activation energy of dislocation movement. Physica Status Solidi (b), 1965, 8, 499–507.

    Article  Google Scholar 

  48. Shanholtz E R, LaSalvia J C. Investigation of the Indentation-Size Effect (ISE) in a commercial SiAlON: Multifractal scaling analysis and underlying mechanisms. Journal of the American Ceramic Society, 2013, 96, 2607–2614.

    Article  Google Scholar 

  49. Li H, Bradt R C. The indentation load/size effect and the measurement of the hardness of vitreous silica. Journal of Non-Crystalline Solids, 1992, 146, 197–212.

    Article  Google Scholar 

  50. Saha R, Nix W D. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Materialia, 2002, 50, 23–38.

    Article  Google Scholar 

  51. Gamonpilas C, Busso E P. On the effect of substrate properties on the indentation behaviour of coated systems. Materials Science and Engineering: A, 2004, 380, 52–61.

    Article  Google Scholar 

  52. Bolshakov A, Oliver W, Pharr G. Finite element studies of the influence of pile-up on the analysis of nanoindentation data. Materials Research Society Symposium Proceedings, Cambridge University Press, 1997, 141–146.

    Google Scholar 

  53. Bolshakov A, Pharr G. Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. Journal of Materials Research, 1998, 13, 1049–1058.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Tomar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, D., Tomar, V. Structural-nanomechanical property correlation of shallow water shrimp (Pandalus platyceros) exoskeleton at elevated temperature. J Bionic Eng 11, 360–370 (2014). https://doi.org/10.1016/S1672-6529(14)60049-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(14)60049-4

Keywords

Navigation