Log in

Rapid method of arsenic estimation in geological samples by WD-XRF using a novel concept of As–Pb concentration equivalence

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The presence of arsenic in ground waters of many countries has been a subject of global concern due to its toxicity. Primary sources of arsenic are geogenic, i.e. weathering and erosion of rocks and soils containing arsenic. This paper presents a rapid method for determination of arsenic in solid geological samples by wavelength dispersive X-ray fluorescence spectrometer. To achieve the best LLD (lower limit of detection), the most intense X-ray fluorescence line Kα1,2 is preferably used for determination of elemental concentrations because it pertains to the most probable transition. But the greatest challenge in arsenic estimation is the serious line overlap of AsKα1,2 lines with the equi-energy PbLα1,2 lines. By using the conventional line overlap correction methods, uncertainty and detection limits in arsenic determination are degraded to an unacceptable degree in samples which contains high lead and low arsenic concentrations. The proposed method bypasses the line overlap issue in employing a novel concept of arsenic-lead concentration equivalence factor for the cumulative peak of AsKα1,2 and PbLα1,2 fluorescence lines. The constancy of this factor for all geological matrices facilitates arsenic determination in samples universally irrespective of matrix elements. For the method validation, 22 international certified reference materials have been analysed and the results proved to be propitious wherein only one value out of 22 determinations showed relative error more than 20% of the certified values. This attests to the high accuracy of the proposed method which can effectively determine arsenic below 5 mg/kg in the presence of high lead concentration up to 1000 mg/kg.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data openly available.

References

  1. B.K. Mandal, K.T. Suzuki, Talanta 58, 201–235 (2002)

    Article  CAS  PubMed  Google Scholar 

  2. R.N. Ratnaike, Postgrad. Med. J. 79, 391–396 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. J.O. Fatoki, J.A. Badmus, J. Hazard. Mater. Adv. 5, 100052–100062 (2022)

    Article  CAS  Google Scholar 

  4. M.F. Hughes, B.D. Beck, Y. Chen, A.S. Lewis, D.J. Thomas, Toxicol. Sci. 123(2), 305–332 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. V.M. Nurchi, A.B. Djordjevic, G.C.J. Axander, G. Bjorklund, J. Aaseth, Biomolecules 10, 235–250 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. N.E. Korte, Crit. Rev. Environ. Control 21(1), 1–39 (1991)

    Article  CAS  Google Scholar 

  7. P.L. Smedley, D.G. Kinniburgh, Appl. Geochem. 17, 517–568 (2002)

    Article  CAS  Google Scholar 

  8. A. Popovica, D. Djordjevicb, P. Polica, Environ. Int. 26, 251–255 (2001)

    Article  Google Scholar 

  9. P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Exp. Suppl. 101, 133–164 (2012)

    PubMed  Google Scholar 

  10. S. Wang, C.N. Mulligan, Sci. Total Environ. 366, 701–721 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. M. Hale, J. Geochem. Explor. 15, 307–323 (1981)

    Article  CAS  Google Scholar 

  12. W. Holak, Anal. Chem. 41, 1712–1713 (1969)

    Article  CAS  PubMed  Google Scholar 

  13. S.P. Quinaia, M.E. Rollemberg, J. Braz. Chem. Soc. 12, 37–41 (2001)

    Article  CAS  Google Scholar 

  14. S. Karthikeyan, T.P. Rao, C.S.P. Iyer, Talanta 49, 523–530 (1999)

    Article  CAS  PubMed  Google Scholar 

  15. B. Welz, M. Sucmanova, Analyst 118, 1417–1423 (1993)

    Article  CAS  Google Scholar 

  16. M. Yamamoto, M. Yasuda, Y. Yamamoto, Anal. Chem. 57, 1382–1385 (1985)

    Article  CAS  Google Scholar 

  17. D.M. Hueber, J.D. Winefordner, Anal. Chim. Acta 316, 129–144 (1995)

    Article  CAS  Google Scholar 

  18. I. Marawi, J. Wang, J.A. Caruso, Anal. Chim. Acta. 291, 127–136 (1994)

    Article  CAS  Google Scholar 

  19. S. Nielsen, E.H. Hansen, Anal. Chim. Acta 343(1–2), 5–17 (1997)

    Article  CAS  Google Scholar 

  20. X.-P. Yan, R. Kerrich, M.J. Hendry, Anal. Chem. 70, 4736–4742 (1998)

    Article  CAS  PubMed  Google Scholar 

  21. C. Yu, Q. Cai, Z.-X. Guo, Z. Yang, S.B. Khoo, Spectrochim. Acta B 58, 1335–1349 (2003)

    Article  Google Scholar 

  22. M.F. Huang, S.J. Jiang, C.J. Hwang, J. Anal. At. Spectrom. 10, 31–35 (1995)

    Article  CAS  Google Scholar 

  23. Y.C. Sun, J.Y. Yang, Anal. Chim. Acta 395, 293–300 (1999)

    Article  CAS  Google Scholar 

  24. E.P. Bertin, Principles and practice of X-ray spectrometric analysis. J. Appl. Crystallogr. 11(1), 156 (1972)

    Google Scholar 

  25. B. Beckhoff, B. Kanngießer, N. Langhoff, R. Wedell, H. Wolff, Handbook of Practical X-ray Fluorescence Analysis (Springer, Berlin, 2006)

    Book  Google Scholar 

  26. E. Marguí, I. Queralt, E. de Almeida, Chemosphere 303, 135006–135023 (2022)

    Article  PubMed  Google Scholar 

  27. https://www.olympus-ims.com/applications/xrf-technology-analysis-arsenic-lead-soil. Accessed 07 Mar 2023

  28. K. Govindaraju, 1994 compilation of working values and sample description of 383 geostandards. Geostand. Newsl. 18, 1–158 (1994)

    Article  CAS  Google Scholar 

  29. P. J. Potts, X-ray fluorescence analysis: principles and practice of wavelength dispersive spectrometry. A Handbook of Silicate Rock Analysis 226–285 (1987)

  30. P. Brouwer, Theory of XRF, PANalytical B.V., 3rd edition, p 59 (2010)

  31. J. Sherman, Spectrochim. Acta 7, 283–324 (1955)

    Article  CAS  Google Scholar 

  32. W.K. De Jongh, X-Ray Spectrom. 2, 151–158 (1973)

    Article  Google Scholar 

  33. R.M. Rousseau, Spectrochim. Acta Part B. 61, 759–777 (2006)

    Article  Google Scholar 

  34. E. Marguı, M. Hidalgo, I. Queralt, Spectrochimica Acta Part B 60, 1363–1372 (2005)

    Article  Google Scholar 

  35. P.J. Potts, P.C. Webb, J.S. Watson, Analyst 110, 507–513 (1985)

    Article  CAS  Google Scholar 

  36. T. Hutton, S.M. Elliott, Chem. Geol. 29, 1–11 (1980)

    Article  CAS  Google Scholar 

  37. S. Ghosh, C. Saha, C. Dutta, A. Sur, Indian. J. Geosci. 72, 37–50 (2018)

    CAS  Google Scholar 

  38. R. Jenkins, R.W. Gould, D. Gedcke, Quantitative X-ray Spectrometry, 2nd edn. (Marcel Dekker Inc., New York, 1995)

    Book  Google Scholar 

  39. B.K. Agarwal, X-ray Spectroscopy: An Introduction (Springer, Berlin, 1979)

    Book  Google Scholar 

  40. P.J. Potts, A Handbook of Silicate Rock Analysis (Springer Science and Business Media, New York, 1992)

    Book  Google Scholar 

  41. A.N. Kadachi, M.A. Al-Eshaikh, X-Ray Spectrom. 41, 350–354 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Saibal Ghosh, Deputy Director General (M-IV), for their constant support. Authors are also grateful to Dr. Rupankar Paira from Department of Chemistry, Maharaja Manindra Chandra College, Kolkata, India, for his valuable discussion and inputs.

Author information

Authors and Affiliations

Authors

Contributions

SG and PDB contributed to methodology, writing, review and editing of manuscript. AKM contributed to conceptualization, supervision, methodology and writing original draft of manuscript. AR and MM contributed to formal analysis and validation. URC contributed to validation and providing resources.

Corresponding author

Correspondence to Ashok Kumar Maurya.

Ethics declarations

Conflict of interest

The authors declared that there are no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (Doc 547 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Maurya, A.K., Barman, P.D. et al. Rapid method of arsenic estimation in geological samples by WD-XRF using a novel concept of As–Pb concentration equivalence. ANAL. SCI. 39, 1531–1539 (2023). https://doi.org/10.1007/s44211-023-00367-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00367-9

Keywords

Navigation