Log in

Cost-effective formaldehyde assay platform for multi-sample analysis in one run based on pervaporation coupled with a biodegradable sensor and a simple heat control unit

  • Special Issue: Original Paper
  • Novel Analytical Approaches towards SDGs
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A novel, cost-effective platform using a biodegradable sensor and a simple heat control unit was proposed for multi-sample formaldehyde (FA) assay in one run based on pervaporation. The biodegradable sensor was a composite starch gel attached to paper and immobilized with a mixture of color agents of modified 4-amino-3-hydrazino-5-mercapto-1,2,4-triazol (AHMT). The sensor was situated on the cap of a vial that served for pervaporation. Two types of heat control units were specially designed using the concepts of aluminum block and water bath heating. With these two designs, multi-sample assays together with standard calibration could be performed in the same run under the same conditions. An FA solution was placed in the vial of the pervaporation unit. After a heating period, FA vapor would change the color of the sensor to purple due to the reaction between AHMT and FA. As a result, the color intensity was proportional to the FA concentration. The change of the color (green or G intensity) was monitored using a smartphone camera and image processing software. Factors affecting the sensitivity of the assay, pervaporation time, pervaporation temperature, FA solution volume, and humidity, were studied. Under the chosen condition, the developed procedure, with a calibration of G intensity = 7.93[FA] + 198, R2 = 0.98, was applied to analyze real samples of seafood and mushrooms available in local markets in Thailand. As there were 24 pervaporation units in the proposed platform, 5 working standards and 9 samples with duplicates could be included in a 1-run assay either in the laboratory or on-site. The developed assay offers green chemical analysis with a simple, cost-effective approach. This serves the UN-SDGs of #2, #3, #7, #10, and #12.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. World Health Organization, Iarc. Monogr. Eval. Carcinog. Risks Hum. 88, 1 (2006)

    Google Scholar 

  2. P. Verma, V.K. Gupta, Talanta 30, 443 (1983)

    Article  CAS  PubMed  Google Scholar 

  3. S. Viegas, C. Ladeira, C. Nunes, J. Malta-Vacas, M. Gomes, M. Brito, P. Mendonça, J. Prista, J. Occup. Med. Toxicol. 5, 1 (2010)

    Article  Google Scholar 

  4. V. Yurayart, W. Sanitchua, Thai J. Toxicol. 32, 53 (2017)

    Google Scholar 

  5. T.S. Yeh, T.C. Lin, C.C. Chen, H.M. Wen, J. Food Drug Anal. 21, 190 (2013)

    Article  CAS  Google Scholar 

  6. W. Claeys, C. Vleminckx, A. Dubois, A. Huyghebaert, M. Höfte, P. Daenens, B. Schiffer, Food Addit. Contam. 26, 1265 (2009)

    Article  CAS  Google Scholar 

  7. I. Ueta, S. Mochizuki, S. Kawakubo, T. Kuwabara, Y. Saito, Anal. Sci. 31, 99 (2015)

    Article  CAS  PubMed  Google Scholar 

  8. J. Li, J. Zhu, L. Ye, Asia Pac. J. Clin. Nutr. 16, 127 (2007)

    PubMed  Google Scholar 

  9. H. Wang, J. Ding, X. Du, X. Sun, L. Chen, Q. Zeng, Y. Xu, X. Zhang, Q. Zhao, L. Ding, Food Chem. 131, 380 (2012)

    Article  CAS  Google Scholar 

  10. H.C. Hu, Y.X. Tian, X.S. Chai, Anal. Sci. 28, 689 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. M. Hladová, J. Martinka, P. Rantuch, A. Nečas, Res. Pap. Fac. Mater. Sci. Technol. Slovak Univ. Technol. 27, 105 (2019)

    Google Scholar 

  12. Q. Li, P. Sritharathikhun, S. Motomizu, Anal. Sci. 23, 413 (2007)

    Article  PubMed  Google Scholar 

  13. F. Nowshad, M.N. Islam, M.S. Khan, Agric. Food Secur. 7, 1 (2018)

    Article  Google Scholar 

  14. S. Teerasong, N. Amornthammarong, K. Grudpan, N. Teshima, T. Sakai, D. Nacapricha, N. Ratanawimarnwong, Anal. Sci. 26, 629 (2010)

    Article  CAS  PubMed  Google Scholar 

  15. X.L. Guo, Y. Chen, H.L. Jiang, X.B. Qiu, D.L. Yu, Sensors (Switzerland) 2018, 18 (2018)

    Google Scholar 

  16. Y. Sekine, R. Katori, Y. Tsuda, T. Kitahara, Environ. Technol. (United Kingdom) 37, 1647 (2016)

    CAS  Google Scholar 

  17. S.H. Jung, J.W. Kim, I.G. Jeon, Y.H. Lee, Aquaculture 194, 253 (2001)

    Article  CAS  Google Scholar 

  18. K. Murai, M. Okano, H. Kuramitz, N. Hata, T. Kawakami, S. Taguchi, Anal. Sci. 24, 1455 (2008)

    Article  CAS  PubMed  Google Scholar 

  19. U. Pongkitdachoti, F. Unob, Anal. Methods 14, 926 (2022)

    Article  CAS  PubMed  Google Scholar 

  20. C. Yeerum, P. Issarangkura Na Ayutthaya, K. Kesonkan, K. Kiwfo, P. Boochathum, K. Grudpan, M. Vongboot, Molecules 2022, 27 (2022)

    Google Scholar 

  21. K. Rovina, J.M. Vonnie, S.N. Shaeera, S.X. Yi, N.F.A. Halid, Sens. Bio-Sens. Res. 27, 100310 (2020)

    Article  Google Scholar 

  22. O. Bunkoed, F. Davis, P. Kanatharana, P. Thavarungkul, S.P.J. Higson, Anal. Chim. Acta 659, 251 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. W. Wongniramaikul, W. Limsakul, A. Choodum, Food Chem. 249, 154 (2018)

    Article  CAS  PubMed  Google Scholar 

  24. P. Jaikang, P. Paengnakorn, K. Grudpan, Microchem. J. 152, 104283 (2020)

    Article  CAS  Google Scholar 

  25. Y. Ai and J. L. Jane, Starch – Stärke, 2015, 67, 213.

  26. H.J. Chung, Q. Liu, L. Lee, D. Wei, Food Hydrocoll. 25, 968 (2011)

    Article  CAS  Google Scholar 

  27. R. Thakur, P. Pristijono, C.J. Scarlett, M. Bowyer, S.P. Singh, Q.V. Vuong, Int. J. Biol. Macromol. 132, 1079 (2019)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge to the Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Petchra Pra Jom Klao Ph.D. Research Scholarship from King Mongkut’s University of Technology Thonburi (C. Yeerum), the Thailand Research Fund (TRF) Distinguished Research Professor Award Grant (DPG6080002 to K. Grudpan), and Chiang Mai University (through CMU Presidential Scholarship (Contact no. 20/2022) and Center of Excellence for Innovation in Analytical Science and Technology for Biodiversity-based Economic and Society (I-ANALY-S-T_B.BES-CMU)). We are grateful to Asst. Siripat Suteerapataranon for useful discussion and language editing, as well as Dr. Piyanat Issarangkura Na Ayutthaya for useful discussions.

Funding

Petchra Pra Jom Klao Ph.D. Research Scholarship from King Mongkut’s University of Technology Thonburi (C. Yeerum) and the TRF Distinguished Research Professor Award Grant (DPG6080002 to K. Grudpan).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kanokwan Kiwfo or Monnapat Vongboot.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 233 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeerum, C., Kiwfo, K., Kesonkan, K. et al. Cost-effective formaldehyde assay platform for multi-sample analysis in one run based on pervaporation coupled with a biodegradable sensor and a simple heat control unit. ANAL. SCI. 39, 653–662 (2023). https://doi.org/10.1007/s44211-022-00220-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00220-5

Keywords

Navigation