Log in

EARLY FLOWERING 3 represses the nighttime growth response to sucrose in Arabidopsis

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Plant growth depends on the supply of carbohydrates produced by photosynthesis. Exogenously applied sucrose promotes the growth of the hypocotyl in Arabidopsis thaliana seedlings grown under short days. Whether this effect of sucrose is stronger under the environmental conditions where the light input for photosynthesis is limiting remains unknown. We characterised the effects of exogenous sucrose on hypocotyl growth rates under light compared to simulated shade, during different portions of the daily cycle. The strongest effects of exogenous sucrose occurred under shade and during the night; i.e., the conditions where there is reduced or no photosynthesis. Conversely, a faster hypocotyl growth rate, predicted to enhance the demand of carbohydrates, did not associate to a stronger sucrose effect. The early flowering 3 (elf3) mutation strongly enhanced the impact of sucrose on hypocotyl growth during the night of a white-light day. This effect occurred under short, but not under long days. The addition of sucrose enhanced the fluorescence intensity of ELF3 nuclear speckles. The elf3 mutant showed increased abundance of PHYTOCHROME INTERACTING FACTOR4 (PIF4), which is a transcription factor required for a full response to sucrose. Sucrose increased PIF4 protein abundance by post-transcriptional mechanisms. Under shade, elf3 showed enhanced daytime and reduced nighttime effects of sucrose. We conclude that ELF3 modifies the responsivity to sucrose according to the time of the daily cycle and the prevailing light or shade conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smith, A. M., & Stitt, M. (2007). Coordination of carbon supply and plant growth. Plant, Cell and Environment, 30, 1126–1149.

    Article  CAS  PubMed  Google Scholar 

  2. Smith, A. M., & Zeeman, S. C. (2020). Starch: A flexible, adaptable carbon store coupled to plant growth. Annual Review of Plant Biology, 71, 217–245.

    Article  PubMed  Google Scholar 

  3. Stitt, M., & Zeeman, S. C. (2012). Starch turnover: Pathways, regulation and role in growth. Current Opinion in Plant Biology, 15, 282–292.

    Article  CAS  PubMed  Google Scholar 

  4. Sulpice, R., Flis, A., Ivakov, A. A., Apelt, F., Krohn, N., Encke, B., Abel, C., Feil, R., Lunn, J. E., & Stitt, M. (2014). Arabidopsis coordinates the diurnal regulation of carbon allocation and growth across a wide range of Photoperiods. Molecular Plant, 7, 137–155.

    Article  CAS  PubMed  Google Scholar 

  5. De Wit, M., George, G. M., Ince, Y. Ç., Dankwa-Egli, B., Hersch, M., Zeeman, S. C., & Fankhauser, C. (2018). Changes in resource partitioning between and within organs support growth adjustment to neighbor proximity in Brassicaceae seedlings. Proceedings of the National academy of Sciences of the United States of America, 115, E9953–E9961.

    PubMed  PubMed Central  Google Scholar 

  6. Casal, J. J., & Smith, H. (1989). The ‘end-of-day’ phytochrome control of internode elongation in mustard: Kinetics, interaction with the previous fluence rate, and ecological implications. Plant, Cell and Environment, 12, 511–520.

    Article  CAS  Google Scholar 

  7. Sellaro, R., Hoecker, U., Yanovsky, M., Chory, J., & Casal, J. J. (2009). Synergism of red and blue light in the control of Arabidopsis gene expression and development. Current Biology, 19, 1216–1220.

    Article  CAS  PubMed  Google Scholar 

  8. Stewart, J. L., Maloof, J. N., & Nemhauser, J. L. (2011). PIF genes mediate the effect of sucrose on seedling growth dynamics. PLoS ONE, 6, e19894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, Y., & He, J. (2015). Sugar-induced plant growth is dependent on brassinosteroids. Plant Signaling & Behavior, 10, e1082700.

    Article  Google Scholar 

  10. Simon, N. M. L., Kusakina, J., Fernández-López, Á., Chembath, A., Belbin, F. E., & Dodd, A. N. (2018). The energy-signaling Hub SnRK1 is important for sucrose-induced hypocotyl elongation. Plant Physiology, 176, 1299–1310.

    Article  CAS  PubMed  Google Scholar 

  11. Li, L., Liu, K. H., & Sheen, J. (2021). Dynamic nutrient signaling networks in plants. Annual Review of Cell and Developmental Biology, 37, 341–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lastdrager, J., Hanson, J., & Smeekens, S. (2014). Sugar signals and the control of plant growth and development. Journal of Experimental Botany, 65, 799–807.

    Article  CAS  PubMed  Google Scholar 

  13. Figueroa, C. M., & Lunn, J. E. (2016). A tale of two sugars: Trehalose 6-phosphate and sucrose. Plant Physiology, 172, 7–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baena-González, E., & Lunn, J. E. (2020). SnRK1 and trehalose 6-phosphate—two ancient pathways converge to regulate plant metabolism and growth. Current Opinion in Plant Biology, 55, 52–59.

    Article  PubMed  Google Scholar 

  15. Leivar, P., & Monte, E. (2014). PIFs: Systems integrators in plant development. The Plant Cell, 26, 56–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pham, V. N., Kathare, P. K., & Huq, E. (2018). Phytochromes and phytochrome interacting factors. Plant Physiology, 176, 1025–1038.

    Article  CAS  PubMed  Google Scholar 

  17. Hwang, G., Kim, S., Cho, J.-Y., Paik, I., Kim, J.-I., & Oh, E. (2019). Trehalose-6-phosphate signaling regulates thermoresponsive hypocotyl growth in Arabidopsis thaliana. EMBO Reports, 20, e47828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carillo, P., Feil, R., Gibon, Y., Satoh-Nagasawa, N., Jackson, D., Bläsing, O. E., Stitt, M., & Lunn, J. E. (2013). A fluorometric assay for trehalose in the picomole range. Plant Methods, 9, 1–15.

    Article  Google Scholar 

  19. Lunn, J. E., Feil, R., Hendriks, J. H. M., Gibon, Y., Morcuende, R., Osuna, D., Scheible, W. R., Carillo, P., Hajirezaei, M. R., & Stitt, M. (2006). Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. The Biochemical Journal, 397, 139–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, Z., Zhang, Y., Liu, R., Hao, H., Wang, Z., & Bi, Y. (2011). Phytochrome interacting factors (PIFs) are essential regulators for sucrose-induced hypocotyl elongation in Arabidopsis. Journal of Plant Physiology, 168, 1771–1779.

    Article  CAS  PubMed  Google Scholar 

  21. Kelly, G., Brandsma, D., Egbaria, A., Stein, O., Doron-Faigenboim, A., Lugassi, N., Belausov, E., Zemach, H., Shaya, F., Carmi, N., Sade, N., & Granot, D. (2021). Guard cells control hypocotyl elongation through HXK1, HY5, and PIF4. Communications Biology, 4, 1–14.

    Article  Google Scholar 

  22. Zhang, Z., Zhu, J. Y., Roh, J., Marchive, C., Kim, S. K., Meyer, C., Sun, Y., Wang, W., & Wang, Z. Y. (2016). TOR signaling promotes accumulation of BZR1 to balance growth with carbon availability in Arabidopsis. Current Biology, 26, 1854–1860.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, Z., Sun, Y., Jiang, X., Wang, W., & Wang, Z.-Y. (2021). Sugar inhibits brassinosteroid signaling by enhancing BIN2 phosphorylation of BZR1. PLoS Genetics, 17, e1009540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, Y., Liu, Z., Wang, L., Zheng, S., **e, J., & Bi, Y. (2010). Sucrose-induced hypocotyl elongation of Arabidopsis seedlings in darkness depends on the presence of gibberellins. Journal of Plant Physiology, 167, 1130–1136.

    Article  CAS  PubMed  Google Scholar 

  25. Nusinow, D. A., Helfer, A., Hamilton, E. E., King, J. J., Imaizumi, T., Schultz, T. F., Farré, E. M., & Kay, S. A. (2011). The ELF4–ELF3–LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature, 475, 398–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ezer, D., Jung, J. H., Lan, H., Biswas, S., Gregoire, L., Box, M. S., Charoensawan, V., Cortijo, S., Lai, X., Stöckle, D., Zubieta, C., Jaeger, K. E., & Wigge, P. A. (2017). The evening complex coordinates environmental and endogenous signals in Arabidopsis. Nat Plants, 3, 1–12.

    Article  Google Scholar 

  27. Silva, C. S., Nayak, A., Lai, X., Hutin, S., Hugouvieux, V., Jung, J. H., López-Vidriero, I., Franco-Zorrilla, J. M., Panigrahi, K. C. S., Nanao, M. H., Wigge, P. A., & Zubieta, C. (2020). Molecular mechanisms of evening complex activity in Arabidopsis. Proceedings of the National academy of Sciences of the United States of America, 117, 6901–6909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haydon, M. J., Mielczarek, O., Robertson, F. C., Hubbard, K. E., & Webb, A. A. R. (2013). Photosynthetic entrainment of the Arabidopsis thaliana circadian clock. Nature, 502, 689–692.

    Article  CAS  PubMed  Google Scholar 

  29. Shor, E., Potavskaya, R., Kurtz, A., Paik, I., Huq, E., & Green, R. (2018). PIF-mediated sucrose regulation of the circadian oscillator is light quality and temperature dependent. Genes, 9, 628.

    Article  PubMed Central  Google Scholar 

  30. Casal, J. J. (2013). Photoreceptor signaling networks in plant responses to shade. Annual Review of Plant Biology, 64, 403–427.

    Article  CAS  PubMed  Google Scholar 

  31. Roig-Villanova, I., & Martínez-García, J. F. (2016). Plant responses to vegetation proximity: A whole life avoiding shade. Frontiers in Plant Science, 7, 236.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Casal, J. J., & Sanchez, R. A. (1992). Physiological relationships between phytochrome effects on internode extension growth and dry matter accumulation inlight-grown mustard. Photochemistry and Photobiology, 56, 571–577.

    Article  CAS  Google Scholar 

  33. Casal, J. J., Sánchez, R. A., Paganelli-Blau, A. R., & Izaguirre, M. (1995). Phytochrome effects on stem carbon gain in light-grown mustard seedlings are not simply the result of stem extension-growth responses. Physiologia Plantarum, 94, 187–196.

    Article  CAS  Google Scholar 

  34. Yanovsky, M. J., Casal, J. J., Salerno, G. L., & Sanchez, R. A. (1995). Are phytochrome-mediated effects on leaf growth, carbon partitioning and extractable sucrose-phosphate synthase activity the mere consequence of stem-growth responses in light-grown mustard? Journal of Experimental Botany, 46, 753–757.

    Article  CAS  Google Scholar 

  35. Lorrain, S., Allen, T., Duek, P. D., Whitelam, G. C., & Fankhauser, C. (2008). Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. The Plant Journal, 53, 312–323.

    Article  CAS  PubMed  Google Scholar 

  36. Li, L., Ljung, K., Breton, G., Schmitz, R. J., Pruneda-Paz, J., Cowing-Zitron, C., Cole, B. J., Ivans, L. J., Pedmale, U. V., Jung, H. S., Ecker, J. R., Kay, S. A., & Chory, J. (2012). Linking photoreceptor excitation to changes in plant architecture. Genes & Development, 26, 785–790.

    Article  CAS  Google Scholar 

  37. Huq, E., Al-Sady, B., Hudson, M., Kim, C., Apel, K., & Quail, P. H. (2004). Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis. Science, 305, 1937–1941.

    Article  CAS  PubMed  Google Scholar 

  38. Monte, E., Tepperman, J. M., Al-Sady, B., Kaczorowski, K. A., Alonso, J. M., Ecker, J. R., Li, X., Zhang, Y., & Quail, P. H. (2004). The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development. Proceedings of the National academy of Sciences of the United States of America, 101, 16091–16098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fujimori, T., Yamashino, T., Kato, T., & Mizuno, T. (2004). Circadian-controlled basic/helix-loop-helix factor, PIL6, implicated in light-signal transduction in Arabidopsis thaliana. Plant and Cell Physiology, 45, 1078–1086.

    Article  CAS  PubMed  Google Scholar 

  40. Leivar, P., Monte, E., Al-Sady, B., Carle, C., Storer, A., Alonso, J. M., Ecker, J. R., & Quail, P. H. (2008). The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels. The Plant Cell, 20, 337–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Leivar, P., Monte, E., Oka, Y., Liu, T., Carle, C., Castillon, A., Huq, E., & Quail, P. H. (2008). Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness. Current Biology, 18, 1815–1823.

    Article  CAS  PubMed  Google Scholar 

  42. de Wit, M., Ljung, K., & Fankhauser, C. (2015). Contrasting growth responses in lamina and petiole during neighbor detection depend on differential auxin responsiveness rather than different auxin levels. New Phytologist, 208, 198–209.

    Article  PubMed  Google Scholar 

  43. Leivar, P., Martin, G., Soy, J., Dalton-Roesler, J., Quail, P. H., & Monte, E. (2020). Phytochrome-imposed inhibition of PIF7 activity shapes photoperiodic growth in Arabidopsis together with PIF1, 3, 4 and 5. Physiologia Plantarum, 169, 452–466.

    Article  CAS  PubMed  Google Scholar 

  44. Kim, Y. M., Woo, J. C., Song, P. S., & Soh, M. S. (2002). HFR1, a phytochrome A-signalling component, acts in a separate pathway from HY5, downstream of COP1 in Arabidopsis thaliana. The Plant Journal, 30, 711–719.

    Article  CAS  PubMed  Google Scholar 

  45. Zagotta, M. T., Hicks, K. A., Jacobs, C. I., Young, J. C., Hangarter, R. P., & Meeks-Wagner, D. R. (1996). The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering. The Plant Journal, 10, 691–702.

    Article  CAS  PubMed  Google Scholar 

  46. McNellis, T. W., von Arnim, A. G., Araki, T., Komeda, Y., Misera, S., & Deng, X. W. (1994). Genetic and molecular analysis of an allelic series of cop1 mutants suggests functional roles for the multiple protein domains. The Plant Cell, 6, 487–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Plackett, A. R. G., Ferguson, A. C., Powers, S. J., Wanchoo-Kohli, A., Phillips, A. L., Wilson, Z. A., Hedden, P., & Thomas, S. G. (2014). DELLA activity is required for successful pollen development in the Columbia ecotype of Arabidopsis. New Phytologist, 201, 825–836.

    Article  CAS  PubMed  Google Scholar 

  48. Saito, M., Kondo, Y., & Fukuda, H. (2018). BES1 and BZR1 redundantly promote phloem and xylem differentiation. Plant and Cell Physiology, 59, 590–600.

    Article  CAS  PubMed  Google Scholar 

  49. Herrero, E., Kolmos, E., Bujdoso, N., Yuan, Y., Wang, M., Berns, M. C., Uhlworm, H., Coupland, G., Saini, R., Jaskolski, M., Webb, A., Goncalves, J., & Davis, S. J. (2012). EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock. The Plant Cell, 24, 428–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Murcia, G., Nieto, C., Sellaro, R., Prat, S., & Casal, J. J. (2022). Hysteresis in PHYTOCHROME-INTERACTING FACTOR 4 and EARLY-FLOWERING 3 dynamics dominates warm daytime memory in Arabidopsis. The Plant Cell, 34, 2188–2204.

    Article  PubMed  Google Scholar 

  51. Pacín, M., Semmoloni, M., Legris, M., Finlayson, S. A., & Casal, J. J. (2016). Convergence of CONSTITUTIVE PHOTOMORPHOGENESIS 1 and PHYTOCHROME INTERACTING FACTOR signalling during shade avoidance. New Phytologist, 211, 967–979.

    Article  PubMed  Google Scholar 

  52. Sellaro, R., Smith, R. W., Legris, M., Fleck, C., & Casal, J. J. (2019). Phytochrome B dynamics departs from photoequilibrium in the field. Plant, Cell and Environment, 42, 606–617.

    Article  CAS  PubMed  Google Scholar 

  53. Hornitschek, P., Lorrain, S., Zoete, V., Michielin, O., & Fankhauser, C. (2009). Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers. EMBO Journal, 28, 3893–3902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. De Lucas, M., Davière, J. M., Rodríguez-Falcón, M., Pontin, M., Iglesias-Pedraz, J. M., Lorrain, S., Fankhauser, C., Blázquez, M. A., Titarenko, E., & Prat, S. (2008). A molecular framework for light and gibberellin control of cell elongation. Nature, 451, 480–484.

    Article  PubMed  Google Scholar 

  55. Bernardo-García, S., de Lucas, M., Martínez, C., Espinosa-Ruiz, A., Davière, J. M., & Prat, S. (2014). BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth. Genes & Development, 28, 1681–1694.

    Article  Google Scholar 

  56. Bai, M. Y., Shang, J. X., Oh, E., Fan, M., Bai, Y., Zentella, R., Sun, T. P., & Wang, Z. Y. (2012). Brassinosteroid, gibberellin and phytochrome im**e on a common transcription module in Arabidopsis. Nature Cell Biology, 14, 810–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jung, J. H., Domijan, M., Klose, C., Biswas, S., Ezer, D., Gao, M., Khattak, A. K., Box, M. S., Charoensawan, V., Cortijo, S., Kumar, M., Grant, A., Locke, J. C. W., Schäfer, E., Jaeger, K. E., & Wigge, P. A. (2016). Phytochromes function as thermosensors in Arabidopsis. Science, 354, 886–889.

    Article  CAS  PubMed  Google Scholar 

  58. Nieto, C., López-Salmerón, V., Davière, J. M., & Prat, S. (2015). ELF3-PIF4 interaction regulates plant growth independently of the evening complex. Current Biology, 25, 187–193.

    Article  CAS  PubMed  Google Scholar 

  59. Jung, J. H., Barbosa, A. D., Hutin, S., Kumita, J. R., Gao, M., Derwort, D., Silva, C. S., Lai, X., Pierre, E., Geng, F., Kim, S. B., Baek, S., Zubieta, C., Jaeger, K. E., & Wigge, P. A. (2020). A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature, 585, 256–260.

    Article  CAS  PubMed  Google Scholar 

  60. Ronald, J., Su, C., Wang, L., & Davis, S. J. (2022). Cellular localization of Arabidopsis EARLY FLOWERING3 is responsive to light quality. Plant Physiology. https://doi.org/10.1093/plphys/kiac072

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ronald, J., Wilkinson, A. J., & Davis, S. J. (2021). EARLY FLOWERING3 sub-nuclear localization responds to changes in ambient temperature. Plant Physiology, 187, 2352–2355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pacín, M., Legris, M., & Casal, J.J (2013). COP1 re-accumulates in the nucleus under shade. The Plant Journal 75(4), 631–641. https://doi.org/10.1111/tpj.12226

    Article  CAS  PubMed  Google Scholar 

  63. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Mark, Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods 9(7), 676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the University of Buenos Aires (Grant no. 20020170100505BA) and Agencia Nacional de Promoción Cientıfica y Tecnologica (Grant no. PICT-2018-1695).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge José Casal.

Ethics declarations

Conflict of interest

This work is part of the thesis of Matías E. Pereyra, in partial fulfilment of the requirements for the Doctor degree (Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Argentina). On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

This publication is dedicated to Prof. Silvia E. Braslavsky, a pioneer in photobiology and photobiophysics, on the occasion of her 80th birthday.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 235 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereyra, M.E., Murcia, M.G., Borniego, M.B. et al. EARLY FLOWERING 3 represses the nighttime growth response to sucrose in Arabidopsis. Photochem Photobiol Sci 21, 1869–1880 (2022). https://doi.org/10.1007/s43630-022-00264-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00264-6

Keywords

Navigation