Log in

Neuroprotective effects of mirtazapine and imipramine and their effect in pro- and anti-apoptotic gene expression in human neuroblastoma cells

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Experimental and clinical studies indicate that neuronal death with the presence of high levels of reactive oxygen species are present in depressed patients and antidepressants might display neuroprotective effects against them. However, the mechanisms underlying antidepressant neuroprotection are not completely understood. In our previous study, we showed that mirtazapine modulated the expression of pro- and anti-apoptotic proteins in mouse brain structures, but there are no data in human cells. Thus, this work was designed to study the possible neuroprotective properties of mirtazapine and imipramine, two commercially available antidepressants with different primary mechanisms of action, in human neuroblastoma SH-SY5Y cells against an oxidative insult.

Methods

SH-SY5Y cells were preincubated with mirtazapine and imipramine (1–20 μM) for 24 h, then hydrogen peroxide (H2O2) was added into the medium containing the antidepressants for additional 24 h, and MTT assay was carried out subsequently. Also, to elucidate the molecular mechanism underlying the neuroprotective properties of antidepressants, we investigated the effects of mirtazapine and imipramine (2 μM) in pro- and anti-apoptotic proteins gene expression in SH-SY5Y cells.

Results

Mirtazapine (1 and 2 μM) and imipramine (1and 2 μM) protected against hydrogen peroxide-induced cellular viability impairment. Most importantly, both compounds reduced p53 mRNA expression, but only imipramine enhanced the Bcl-2/Bax ratio.

Conclusions

The obtained data indicate that mirtazapine and imipramine have neuroprotective effects against H2O2-induced cell death. Although both antidepressants reduced Bax and p53 mRNA expression, only the protection mediated by imipramine might be due to its ability to enhance Bcl-2/Bax ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

5-HT1A :

Serotonin receptor type 1A

Akt:

Protein kinase B

BDNF:

Brain-derived neurotrophic factor

cDNA:

Complementary deoxyribonucleic acid

CREB:

CAMP response element-binding protein

MAPK:

Mitogen-activated protein kinase

LPS:

Lipopolysaccharides

mRNA:

Messenger ribonucleic acid

References

  1. Lee AL, Ogle WO, Sapolsky RM. Stress and depression: possible links to neuron death in the hippocampus. Bipolar Disord. 2002. https://doi.org/10.1034/j.1399-5618.2002.01144.x.

    Article  PubMed  Google Scholar 

  2. Manji HK, Quiroz JA, Sporn J, Payne JL, Denicoff K, Gray NA, et al. Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol Psychiatry. 2003. https://doi.org/10.1016/S0006-3223(03)00117-3.

    Article  PubMed  Google Scholar 

  3. Duman RS. Depression: a case of neuronal life and death? Biol Psychiatry. 2004. https://doi.org/10.1016/j.biopsych.2004.02.033.

    Article  PubMed  Google Scholar 

  4. Savitz J, Nugent AC, Bogers W, Liu A, Sills R, Luckenbaugh DA, et al. Amygdala volume in depressed patients with bipolar disorder assessed using high resolution 3T MRI: the impact of medication. Neuroimage. 2010. https://doi.org/10.1016/j.neuroimage.2009.11.025.

    Article  PubMed  Google Scholar 

  5. Tsopelas C, Stewart R, Savva GM, Brayne C, Ince P, Thomas A, et al. Neuropathological correlates of late-life depression in older people. Br J Psychiatry. 2011;198:109–14. https://doi.org/10.1192/bjp.bp.110.078816.

    Article  PubMed  Google Scholar 

  6. Cowen DS. Serotonin and neuronal growth factors—a convergence of signaling pathways. J Neurochem. 2007. https://doi.org/10.1111/j.1471-4159.2006.04420.x.

    Article  PubMed  Google Scholar 

  7. Drzyzga ŁR, Marcinowska A, Obuchowicz E. Antiapoptotic and neurotrophic effects of antidepressants: a review of clinical and experimental studies. Brain Res Bull. 2009. https://doi.org/10.1016/j.brainresbull.2009.03.009.

    Article  PubMed  Google Scholar 

  8. McKernan DP, Dinan TG, Cryan JF. “Killing the Blues”: a role for cellular suicide (apoptosis) in depression and the antidepressant response? Prog Neurobiol. 2009. https://doi.org/10.1016/j.pneurobio.2009.04.006.

    Article  PubMed  Google Scholar 

  9. Gupta K, Gupta R, Bhatia MS, Tripathi AK, Gupta LK. Effect of Agomelatine and fluoxetine on HAM-D score, serum brain-derived neurotrophic factor, and tumor necrosis factor-α level in patients with major depressive disorder with severe depression. J Clin Pharmacol. 2017. https://doi.org/10.1002/jcph.963.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Duman RS, Voleti B. Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci. 2012. https://doi.org/10.1016/j.tins.2011.11.004.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shen P, Hu Q, Dong M, Bai S, Liang Z, Chen Z, et al. Venlafaxine exerts antidepressant effects possibly by activating MAPK–ERK1/2 and P13K–AKT pathways in the hippocampus. Behav Brain Res. 2017. https://doi.org/10.1016/j.bbr.2017.08.011.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jantas D, Krawczyk S, Lason W. The predominant protective effect of tianeptine over other antidepressants in models of neuronal apoptosis: the effect blocked by inhibitors of MAPK/ERK1/2 and PI3-K/Akt pathways. Neurotox Res. 2014. https://doi.org/10.1007/s12640-013-9430-3.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Croom KF, Perry CM, Plosker GL. Mirtazapine: a review of its use in major depression and other psychiatric disorders. CNS Drugs. 2009. https://doi.org/10.2165/00023210-200923050-00006.

    Article  PubMed  Google Scholar 

  14. Engel D, Zomkowski ADE, Lieberknecht V, Rodrigues AL, Gabilan NH. Chronic administration of duloxetine and mirtazapine downregulates proapoptotic proteins and upregulates neurotrophin gene expression in the hippocampus and cerebral cortex of mice. J Psychiatr Res. 2013;47:802–8. https://doi.org/10.1016/j.jpsychires.2013.02.013.

    Article  PubMed  Google Scholar 

  15. Rogóz Z, Skuza G, Legutko B. Repeated treatment with mirtazepine induces brain-derived neurotrophic factor gene expression in rats. J Physiol Pharmacol. 2005;56:661.

    PubMed  Google Scholar 

  16. Gulec M, Oral E, Dursun OB, Yucel A, Hacimuftuoglu A, Akcay F, et al. Mirtazapine protects against cisplatin-induced oxidative stress and DNA damage in the rat brain. Psychiatry Clin Neurosci. 2013. https://doi.org/10.1111/j.1440-1819.2012.02395.x.

    Article  PubMed  Google Scholar 

  17. Peng CH, Chiou SH, Chen SJ, Chou YC, Ku HH, Cheng CK, et al. Neuroprotection by imipramine against lipopolysaccharide-induced apoptosis in hippocampus-derived neural stem cells mediated by activation of BDNF and the MAPK pathway. Eur Neuropsychopharmacol. 2008. https://doi.org/10.1016/j.euroneuro.2007.05.002.

    Article  PubMed  Google Scholar 

  18. Han ML, Liu GH, Guo J, Yu SJ, Huang J. Imipramine protects retinal ganglion cells from oxidative stress through the tyrosine kinase receptor B signaling pathway. Neural Regen Res. 2016. https://doi.org/10.4103/1673-5374.179066.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cai L, Wang H, Li Q, Qian Y, Yao W. Salidroside inhibits H2O2-induced apoptosis in PC 12 cells by preventing cytochrome c release and inactivating of caspase cascade. Acta Biochim Biophys Sin (Shanghai). 2008. https://doi.org/10.1111/j.1745-7270.2008.00463.x.

    Article  Google Scholar 

  20. Park S-E, Kim S, Sapkota K, Kim S-J. Neuroprotective effect of Rosmarinus officinalis extract on human dopaminergic cell line, SH-SY5Y. Cell Mol Neurobiol. 2010. https://doi.org/10.1007/s10571-010-9502-3.

    Article  PubMed  Google Scholar 

  21. Su Q, Zheng B, Wang CY, Yang YZ, Luo WW, Ma SM, et al. Oxidative stress induces neuronal apoptosis through suppressing transcription factor EB phosphorylation at Ser467. Cell Physiol Biochem. 2018. https://doi.org/10.1159/000489198.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Behr GA, Moreira JCF, Frey BN. Preclinical and clinical evidence of antioxidant effects of antidepressant agents: implications for the pathophysiology of major depressive disorder. Oxid Med Cell Longev. 2012. https://doi.org/10.1155/2012/609421.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Engel DF, de Oliveira J, Lieberknecht V, Rodrigues ALS, de Bem AF, Gabilan NH. Duloxetine Protects human neuroblastoma cells from oxidative stress-induced cell death through Akt/Nrf-2/HO-1 pathway. Neurochem Res. 2017. https://doi.org/10.1007/s11064-017-2433-3.

    Article  PubMed  Google Scholar 

  24. Cunha MP, Lieberknecht V, Ramos-Hryb AB, Olescowicz G, Ludka FK, Tasca CI, et al. Creatine affords protection against glutamate-induced nitrosative and oxidative stress. Neurochem Int. 2016;95:4–14. https://doi.org/10.1016/j.neuint.2016.01.002.

    Article  CAS  PubMed  Google Scholar 

  25. Engel D, Zomkowski ADE, Lieberknecht V, Rodrigues AL, Gabilan NH. Chronic administration of duloxetine and mirtazapine downregulates proapoptotic proteins and upregulates neurotrophin gene expression in the hippocampus and cerebral cortex of mice. J Psychiatr Res. 2013. https://doi.org/10.1016/j.jpsychires.2013.02.013.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fukamachi Y, Karasaki Y, Sugiura T, Itoh H, Abe T, Yamamura K, et al. Zinc suppresses apoptosis of U937 cells induced by hydrogen peroxide through an increase of the Bcl-2/Bax ratio. Biochem Biophys Res Commun. 1998. https://doi.org/10.1006/bbrc.1998.8621.

    Article  PubMed  Google Scholar 

  27. Zhang Q, Ma Y, Cheng Y-F, Li W-J, Zhang Z, Chen S-Y. Involvement of reactive oxygen species in 2-methoxyestradiol-induced apoptosis in human neuroblastoma cells. Cancer Lett. 2011;313:201–10. https://doi.org/10.1016/j.canlet.2011.09.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sowa-Kućma M, Styczeń K, Siwek M, Misztak P, Nowak RJ, Dudek D, et al. Are there differences in lipid peroxidation and immune biomarkers between major depression and bipolar disorder: effects of melancholia, atypical depression, severity of illness, episode number, suicidal ideation and prior suicide attempts. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018. https://doi.org/10.1016/j.pnpbp.2017.08.024.

    Article  Google Scholar 

  29. Abdel-Wahab BA, Salama RH. Venlafaxine protects against stress-induced oxidative DNA damage in hippocampus during antidepressant testing in mice. Pharmacol Biochem Behav. 2011. https://doi.org/10.1016/j.pbb.2011.07.015.

    Article  PubMed  Google Scholar 

  30. Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, et al. Mechanisms of cell death in oxidative stress. Antioxid Redox Signal. 2007. https://doi.org/10.1089/ars.2007.9.49.

    Article  PubMed  Google Scholar 

  31. Lee AY, Choi JM, Lee MH, Lee J, Lee S, Cho EJ. Protective effects of perilla oil and alpha linolenic acid on SH-SY5Y neuronal cell death induced by hydrogen peroxide. Nutr Res Pract. 2018. https://doi.org/10.4162/nrp.2018.12.2.93.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Réus GZ, Stringari RB, De Souza B, Petronilho F, Dal-Pizzol F, Hallak JE, et al. Harmine and imipramine promote antioxidant activities in prefrontal cortex and hippocampus. Oxid Med Cell Longev. 2010. https://doi.org/10.4161/oxim.3.5.13109.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Levy MJF, Boulle F, Steinbusch HW, van den Hove DLA, Kenis G, Lanfumey L. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology. 2018;235:2195–220. https://doi.org/10.1007/s00213-018-4950-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abelaira HM, Réus GZ, Ribeiro KF, Zappellini G, Ferreira GK, Gomes LM, et al. Effects of acute and chronic treatment elicited by lamotrigine on behavior, energy metabolism, neurotrophins and signaling cascades in rats. Neurochem Int. 2011. https://doi.org/10.1016/j.neuint.2011.10.007.

    Article  PubMed  Google Scholar 

  35. Park S, Kim D, Dan HC, Chen H, Testa JR, Cheng JQ. Identification of Akt interaction protein PHF20/TZP that transcriptionally regulates p53. J Biol Chem. 2012. https://doi.org/10.1074/jbc.M111.333922.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007. https://doi.org/10.1152/physrev.00013.2006.

    Article  PubMed  Google Scholar 

  37. Chen Y-H, Yeh C-W, Lo H-C, Su S-L, Hseu Y-C, Hsu L-S. Generation of reactive oxygen species mediates butein-induced apoptosis in neuroblastoma cells. Oncol Rep. 2012;27:1233–7. https://doi.org/10.3892/or.2012.1632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang P, Zhao R, Yan W, Zhang X, Zhang H, Xu B, et al. Neuroprotection by new ligustrazine-cinnamon acid derivatives on CoCl 2 -induced apoptosis in differentiated PC12 cells. Bioorg Chem. 2018;77:360–9. https://doi.org/10.1016/j.bioorg.2018.01.029.

    Article  CAS  PubMed  Google Scholar 

  39. Cheng EHY, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, et al. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell. 2001. https://doi.org/10.1016/S1097-2765(01)00320-3.

    Article  PubMed  Google Scholar 

  40. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 2004. https://doi.org/10.1016/S0092-8674(04)00046-7.

    Article  PubMed  Google Scholar 

  41. Lopes FM, da Motta LL, De Bastiani MA, Pfaffenseller B, Aguiar BW, de Souza LF, et al. RA differentiation enhances dopaminergic features, changes redox parameters, and increases dopamine transporter dependency in 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Neurotox Res. 2017. https://doi.org/10.1007/s12640-016-9699-0.

    Article  PubMed  Google Scholar 

  42. Copeland RL, Leggett YA, Kanaan YM, Taylor RE, Tizabi Y. Neuroprotective effects of nicotine against salsolinol-induced cytotoxicity: Implications for parkinson’s disease. Neurotox Res. 2005. https://doi.org/10.1007/BF03033982.

    Article  PubMed  Google Scholar 

  43. Leri M, Natalello A, Bruzzone E, Stefani M, Bucciantini M. Oleuropein aglycone and hydroxytyrosol interfere differently with toxic Aβ 1–42 aggregation. Food Chem Toxicol. 2019. https://doi.org/10.1016/j.fct.2019.04.015.

    Article  PubMed  Google Scholar 

  44. Olianas MC, Dedoni S, Onali P. LPA1 is a key mediator of intracellular signalling and neuroprotection triggered by tetracyclic antidepressants in hippocampal neurons. J Neurochem. 2017. https://doi.org/10.1111/jnc.14150.

    Article  PubMed  Google Scholar 

  45. Xu L, Su J, Guo L, Wang S, Deng X, Ma S. Modulation of LPA1 receptor-mediated neuronal apoptosis by Saikosaponin-d: a target involved in depression. Neuropharmacology. 2019;155:150–61. https://doi.org/10.1016/j.neuropharm.2019.05.027.

    Article  CAS  PubMed  Google Scholar 

  46. Biswal MR, Ahmed CM, Ildefonso CJ, Han P, Li H, Jivanji H, et al. Systemic treatment with a 5HT1a agonist induces anti-oxidant protection and preserves the retina from mitochondrial oxidative stress. Exp Eye Res. 2015. https://doi.org/10.1016/j.exer.2015.07.022.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yoshino Y, Ochi S, Yamazaki K, Nakata S, Iga J, Ueno S. Endothelial nitric oxide synthase in rat brain is downregulated by sub-chronic antidepressant treatment. Psychopharmacol (Berl). 2017;234:1663–9. https://doi.org/10.1007/s00213-017-4567-z.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SH-SY5Y cells were gently donated by Dr. Marcelo Farina from Universidade Federal de Santa Catarina. The article was proofread by Dr. Mauricio Peña Cunha from Universidade Federal de Santa Catarina.

Funding

This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), FAPESC (TO 22.333/2010-6). IBN-Net/CNPq (IBN 01.06.0842-00), CAPES-PROCAD, CAPES-REUNI, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES. INCT-National Institute of Science and Technology for Excitotoxicity and Neuroprotection. NHG, ALSR and RBL are recipients of CNPq fellowship. All these institutions are governmental institutions without influence under this work.

Author information

Authors and Affiliations

Authors

Contributions

VL, ALSR and NHG designed the study, wrote the protocol, and wrote the manuscript. VL and DE performed cell culture experiments, VL and DE performed the qRT-PCR analysis. VL statistical analysis. VL, DE, ALSR and NHG managed the literature searches and analysis. All authors contributed and have approved the manuscript.

Corresponding author

Correspondence to Vicente Lieberknecht.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lieberknecht, V., Engel, D., Rodrigues, A.L.S. et al. Neuroprotective effects of mirtazapine and imipramine and their effect in pro- and anti-apoptotic gene expression in human neuroblastoma cells. Pharmacol. Rep 72, 563–570 (2020). https://doi.org/10.1007/s43440-019-00009-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-019-00009-w

Keywords

Navigation