Log in

Production of mevalonate in Pseudomonas putida via tuning the expression of pathway gene

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Beyond its potential for biofuel production, Pseudomonas putida’s capability to metabolize lignin and other lignocellulosic materials earmarks it as a pivotal candidate for engineering to yield diverse value-added chemicals, thereby challenging traditional petrochemical approaches. Recognizing the inherent environmental, economic, and societal advantages, amplifying role of P. putida in industrial applications becomes imperative. In this context, our study focused on characterizing a comprehensive set of promoters and ribosome binding site tailored for P. putida, spanning a broad spectrum of activities. By leveraging these genetic tools, we adeptly balanced the heterologous mevalonate (MVA) pathway flux within P. putida. As a culmination of our efforts, the optimal MVA-producing strains were identified, achieving a remarkable yield of 5 g/LMVA in a 5 L fed-batch fermenter, marking the highest reported yield in Pseudomonas to date. This research not only provides valuable genetic tools for future engineering studies with P. putida, but also accentuates P. putida’s potential in synthetic biology and its promise for sustainable chemical production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available upon request. Please contact the corresponding author for further details on accessing the data.

References

  1. Wolf DE, Hoffman CH, Aldrich PE, et al. β-Hydroxy-β-methyl-δ-valerolactone (divalonic acid), a new biological factor. J Am Chem Soc. 1956;78:4499. https://doi.org/10.1021/ja01598a090.

    Article  CAS  Google Scholar 

  2. Tamura G. Hiochic acid, a new growth factor for Lactobacillus homohiochi and Lactobacillus heterohiochi. J General Appl Microbiol. 2004;50(6):327–30. https://doi.org/10.2323/jgam.2.431.

    Article  Google Scholar 

  3. Beck ZQ, Eliot AC, Peres CM, et al. Utilization of phosphoketolase in the production of mevalonate, isoprenoid precursors, and isoprene . Google Patents; 2015.

  4. Zhang C, Schneiderman DK, Cai T, et al. Optically active β-methyl-δ-valerolactone: biosynthesis and polymerization. ACS Sustain Chem Eng. 2016;4(8):4396–402. https://doi.org/10.1021/acssuschemeng.6b00992.

    Article  CAS  Google Scholar 

  5. **ong M, Schneiderman DK, Bates FS, et al. Scalable production of mechanically tunable block polymers from sugar. Proc Natl Acad Sci USA. 2014;111(23):8357–62. https://doi.org/10.1073/pnas.1404596111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liman GLS, Hulko T, Febvre HP, et al. A linear pathway for mevalonate production supports growth of Thermococcus kodakarensis. Extremophiles. 2019;23(2):229–38. https://doi.org/10.1007/s00792-019-01076-w.

    Article  CAS  PubMed  Google Scholar 

  7. Tsuruta H, Paddon C, Eng D, et al. High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS ONE. 2009;4:4489. https://doi.org/10.1371/journal.pone.0004489.

    Article  CAS  Google Scholar 

  8. Tabata K, Hashimoto S. Production of mevalonate by a metabolically-engineered Escherichia coli. Biotechnol Lett. 2004;26(19):1487–91. https://doi.org/10.1023/B:BILE.0000044449.08268.7d.

    Article  CAS  PubMed  Google Scholar 

  9. Martin VJ, Pitera DJ, Withers ST, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol. 2003;21(7):796–802. https://doi.org/10.1038/nbt833.

    Article  CAS  PubMed  Google Scholar 

  10. Pitera DJ, Paddon CJ, Newman JD, et al. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng. 2007;9(2):193–207. https://doi.org/10.1016/j.ymben.2006.11.002.

    Article  CAS  PubMed  Google Scholar 

  11. Satowa D, Fujiwara R, Uchio S, et al. Metabolic engineering of E. coli for improving mevalonate production to promote NADPH regeneration and enhance acetyl-CoA supply. Biotechnol Bioeng. 2020;117(7):2153–64. https://doi.org/10.1002/bit.27350.

    Article  CAS  PubMed  Google Scholar 

  12. Wang J, Niyompanich S, Tai YS, et al. Engineering of a highly efficient Escherichia coli strain for mevalonate fermentation through chromosomal integration. Appl Environ Microbiol. 2016;82(24):7176–84. https://doi.org/10.1128/aem.02178-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Q, Xu J, Sun Z, et al. Engineering an in vivo EP-bifido pathway in Escherichia coli for high-yield acetyl-CoA generation with low CO2 emission. Metab Eng. 2019;51:79–87. https://doi.org/10.1016/j.ymben.2018.08.003.

    Article  CAS  PubMed  Google Scholar 

  14. Rodriguez S, Denby CM, Van Vu T, et al. ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae. Microbial Cell Fact. 2016;15(1):48. https://doi.org/10.1186/s12934-016-0447-1.

    Article  CAS  Google Scholar 

  15. Bitzenhofer NL, Kruse L, Thies S, et al. Towards robust Pseudomonas cell factories to harbour novel biosynthetic pathways. Essays Biochem. 2021;65(2):319–36. https://doi.org/10.1042/ebc20200173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang J, Im Y, Kim TH, et al. Engineering Pseudomonas putida KT2440 to convert 2,3-butanediol to mevalonate [1879-0909 (Electronic)].

  17. Moser S, Pichler H. Identifying and engineering the ideal microbial terpenoid production host. Appl Microbiol Biotechnol. 2019;103(14):5501–16. https://doi.org/10.1007/s00253-019-09892-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Loeschcke A, Thies S. Pseudomonas putida—a versatile host for the production of natural products. Appl Microbiol Biotechnol. 2015;99(15):6197–214. https://doi.org/10.1007/s00253-015-6745-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hernandez-Arranz S, Perez-Gil J, Marshall-Sabey D, et al. Engineering Pseudomonas putida for isoprenoid production by manipulating endogenous and shunt pathways supplying precursors. Microbial Cell Fact. 2019;18(1):152. https://doi.org/10.1186/s12934-019-1204-z.

    Article  CAS  Google Scholar 

  20. Shcherbo D, Murphy CS, Ermakova GV, et al. Far-red fluorescent tags for protein imaging in living tissues. Biochem J. 2009;418(3):567–74. https://doi.org/10.1042/bj20081949.

    Article  CAS  PubMed  Google Scholar 

  21. Duan Y, Zhang X, Zhai W, et al. Deciphering the rules of ribosome binding site differentiation in context dependence. ACS Synth Biol. 2022;11(8):2726–40. https://doi.org/10.1021/acssynbio.2c00139.

    Article  CAS  PubMed  Google Scholar 

  22. Lu S, Zhou C, Guo X, et al. Enhancing fluxes through the mevalonate pathway in Saccharomyces cerevisiae by engineering the HMGR and β-alanine metabolism. Microb Biotechnol. 2022;15(8):2292–306. https://doi.org/10.1111/1751-7915.14072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dudley QM, Anderson KC, Jewett MC. Cell-free mixing of Escherichia coli crude extracts to prototype and rationally engineer high-titer mevalonate synthesis. ACS Synth Biol. 2016;5(12):1578–88. https://doi.org/10.1021/acssynbio.6b00154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dueber JE, Wu GC, Malmirchegini GR, et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol. 2009;27(8):753–9. https://doi.org/10.1038/nbt.1557.

    Article  CAS  PubMed  Google Scholar 

  25. Liu H, Chen Y, Zhang Y, et al. Enhanced production of polyhydroxyalkanoates in Pseudomonas putida KT2440 by a combination of genome streamlining and promoter engineering. Int J Biol Macromol. 2022;209(Pt A):117–24. https://doi.org/10.1016/j.ijbiomac.2022.04.004.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Y, Liu H, Liu Y, et al. A promoter engineering-based strategy enhances polyhydroxyalkanoate production in Pseudomonas putida KT2440. Int J Biol Macromol. 2021;191:608–17. https://doi.org/10.1016/j.ijbiomac.2021.09.142.

    Article  CAS  PubMed  Google Scholar 

  27. Wirth NT, Nikel PI. Combinatorial pathway balancing provides biosynthetic access to 2-fluoro-cis, cis-muconate in engineered Pseudomonas putida. Chem Catal. 2021;1(6):1234–59. https://doi.org/10.1016/j.checat.2021.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pfleger BF, Pitera DJ, Smolke CD, et al. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol. 2006;24(8):1027–32. https://doi.org/10.1038/nbt1226.

    Article  CAS  PubMed  Google Scholar 

  29. Zelcbuch L, Antonovsky N, Bar-Even A, et al. Spanning high-dimensional expression space using ribosome-binding site combinatorics. Nucl Acids Res. 2013;41(9):e98. https://doi.org/10.1093/nar/gkt151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu L, Liu P, Dai Z, et al. Fine-tuning the expression of pathway gene in yeast using a regulatory library formed by fusing a synthetic minimal promoter with different Kozak variants. Microb Cell Fact. 2021;20(1):148. https://doi.org/10.1186/s12934-021-01641-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jeschek M, Gerngross D, Panke S. Combinatorial pathway optimization for streamlined metabolic engineering. Curr Opin Biotechnol. 2017;47:142–51. https://doi.org/10.1016/j.copbio.2017.06.014.

    Article  CAS  PubMed  Google Scholar 

  32. Jeschek M, Gerngross D, Panke S. Rationally reduced libraries for combinatorial pathway optimization minimizing experimental effort. Nat Commun. 2016;7:11163. https://doi.org/10.1038/ncomms11163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Englund E, Liang F, Lindberg P. Evaluation of promoters and ribosome binding sites for biotechnological applications in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Sci Rep. 2016;6:36640. https://doi.org/10.1038/srep36640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Song AA, Abdullah JO, Abdullah MP, et al. Overexpressing 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) in the lactococcal mevalonate pathway for heterologous plant sesquiterpene production. PLoS ONE. 2012;7(12):e52444. https://doi.org/10.1371/journal.pone.0052444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang Y, **g F, Yu S, et al. Co-overexpression of the HMGR and FPS genes enhances artemisinin content in Artemisia annua L. J Med Plants Res. 2011;8:4.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LZ: Writing-Original Draft, Conceptualization, Methodology. TF: Validation, Investigation. XZ: Project administration. YC: Supervision, Project administration.

Corresponding author

Correspondence to Yujie Cai.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Fan, TP., Cai, Y. et al. Production of mevalonate in Pseudomonas putida via tuning the expression of pathway gene. Syst Microbiol and Biomanuf 4, 1162–1173 (2024). https://doi.org/10.1007/s43393-023-00225-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-023-00225-9

Keywords

Navigation