Log in

Is Propionibacterium acnes becoming the most common bacteria in delayed infections following adolescent idiopathic scoliosis surgery?

  • Case Series
  • Published:
Spine Deformity Aims and scope Submit manuscript

Abstract

Study design

Retrospective review of hospital charts.

Objective

(1) To determine the microbiological profile of patients with surgical site infections following posterior spinal fusion surgery (PSF) for Adolescent Idiopathic scoliosis (AIS). (2) To study the treatment outcome of patients with surgical site infections (SSI) following surgery for AIS. (3) To identify the key differences in presentation and management of acute and delayed SSI following AIS surgery.

Summary of background data

There has been increasing evidence of the role of P. acnes in deep surgical site infections. Literature related to this is abundant in relation to shoulder arthroplasty; however, it is sparse in relation to spine surgery.

Methods

We conducted a retrospective review of all patients treated for AIS during a 5-year period (2010–2014) at our institution, with a minimum of 2-year follow-up after the index surgery. Patients with a postoperative infection following their index surgery were included. Charts of AIS patients with post-op infections were reviewed for details of the index surgery, time to presentation of the infection, presenting signs/symptoms, microbiology details, details of surgical and antibiotic treatment, and outcomes.

Results

Nine (2.8%) post-op infections were identified out of 315 cases for AIS during this period. Seven (2.2%) involved P. acnes. Two (0.6%) involved MSSA. The average time for cultures to show growth was 6.1 days (range 5–8 days) in P. acnes group and 2–3 days in MSSA group. Patients with P. acnes infections were treated with implant removal, debridement and antibiotics. All patients achieved solid fusion except two patients from the P. acnes group had pseudoarthrosis and had to undergo revision fusion.

Conclusion

Propionibacterium acnes was the single most common bacteria isolated from delayed surgical site infection following PSF in AIS patients. Optimal treatment consists of debridement, implant removal and antibiotics. These patients have high incidence of pseudoarthrosis.

Level of evidence

Level IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Clark CE, Shufflebarger HL (1999) Late-develo** infection in instrumented idiopathic scoliosis. Spine 24:1909–1912 ((Phila Pa 1976))

    Article  CAS  Google Scholar 

  2. Hahn F, Zbinden R, Min K (2005) Late implant infections caused by Propionibacterium acnes in scoliosis surgery. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 14:783–788. https://doi.org/10.1007/s00586-004-0854-6

    Article  Google Scholar 

  3. Rayes M, Colen CB, Bahgat DA, Higashida T, Guthikonda M, Rengachary S et al (2010) Safety of instrumentation in patients with spinal infection. J Neurosurg Spine 12:647–659. https://doi.org/10.3171/2009.12.SPINE09428

    Article  PubMed  Google Scholar 

  4. Richards BS (1995) Delayed infections following posterior spinal instrumentation for the treatment of idiopathic scoliosis. J Bone Joint Surg Am 77:524–529

    Article  CAS  Google Scholar 

  5. Farley FA, Li Y, Gilsdorf JR, VanderHave KL, Hensinger RN, Speers M et al (2014) Postoperative spine and VEPTR infections in children: a case-control study. J Pediatr Orthop 34:14–21. https://doi.org/10.1097/BPO.0b013e3182a0064d

    Article  PubMed  Google Scholar 

  6. Leeming JP, Holland KT, Cunliffe WJ (1984) The microbial ecology of pilosebaceous units isolated from human skin. J Gen Microbiol 130:803–807. https://doi.org/10.1099/00221287-130-4-803

    Article  CAS  PubMed  Google Scholar 

  7. Lutz M-F, Berthelot P, Fresard A, Cazorla C, Carricajo A, Vautrin A-C et al (2005) Arthroplastic and osteosynthetic infections due to Propionibacterium acnes: a retrospective study of 52 cases, 1995–2002. Eur J Clin Microbiol Infect Dis 24:739–744. https://doi.org/10.1007/s10096-005-0040-8

    Article  PubMed  Google Scholar 

  8. Zeller V, Ghorbani A, Strady C, Leonard P, Mamoudy P, Desplaces N (2007) Propionibacterium acnes: an agent of prosthetic joint infection and colonization. J Infect 55:119–124. https://doi.org/10.1016/j.**f.2007.02.006

    Article  PubMed  Google Scholar 

  9. Deramo VA, Ting TD (2001) Treatment of Propionibacterium acnes endophthalmitis. Curr Opin Ophthalmol 12:225–229

    Article  CAS  Google Scholar 

  10. Crawford JJ, Sconyers JR, Moriarty JD, King RC, West JF (1974) Bacteremia after tooth extractions studied with the aid of prereduced anaerobically sterilized culture media. Appl Microbiol 27:927–932

    Article  CAS  Google Scholar 

  11. McLorinan GC, Glenn JV, McMullan MG, Patrick S (2005) Propionibacterium acnes wound contamination at the time of spinal surgery. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-200508000-00012

    Article  PubMed  Google Scholar 

  12. Holmberg A, Lood R, Mörgelin M, Söderquist B, Holst E, Collin M et al (2009) Biofilm formation by Propionibacterium acnes is a characteristic of invasive isolates. Clin Microbiol Infect 15:787–795. https://doi.org/10.1111/j.1469-0691.2009.02747.x

    Article  CAS  PubMed  Google Scholar 

  13. Heggeness MH, Esses SI, Errico T, Yuan HA (1993) Late infection of spinal instrumentation by hematogenous seeding. Spine 18:492–496 ((Phila Pa 1976))

    Article  CAS  Google Scholar 

  14. Dietz FR, Koontz FP, Found EM, Marsh JL (1991) The importance of positive bacterial cultures of specimens obtained during clean orthopaedic operations. J Bone Joint Surg Am 73:1200–1207

    Article  CAS  Google Scholar 

  15. Lee MJ, Pottinger PS, Butler-Wu S, Bumgarner RE, Russ SM, Matsen FA 3rd (2014) Propionibacterium persists in the skin despite standard surgical preparation. J Bone Jt Surg Am 96:1447–1450. https://doi.org/10.2106/jbjs.m.01474

    Article  Google Scholar 

  16. Matsen FA 3rd, Butler-Wu S, Carofino BC, Jette JL, Bertelsen A, Bumgarner R (2013) Origin of propionibacterium in surgical wounds and evidence-based approach for culturing propionibacterium from surgical sites. J Bone Joint Surg Am 95:e1811–e1817. https://doi.org/10.2106/JBJS.L.01733

    Article  PubMed  Google Scholar 

  17. Nandyala SV, Schwend RM (2013) Prevalence of intraoperative tissue bacterial contamination in posterior pediatric spinal deformity surgery. Spine 38:E482–E486. https://doi.org/10.1097/BRS.0b013e3182893be1 ((Phila Pa 1976))

    Article  PubMed  Google Scholar 

  18. Matsen FA, Russ SM, Bertelsen A, Butler-Wu S, Pottinger PS (2015) Propionibacterium can be isolated from deep cultures obtained at primary arthroplasty despite intravenous antimicrobial prophylaxis. J Shoulder Elb Surg 24:844–847. https://doi.org/10.1016/j.jse.2014.10.016

    Article  Google Scholar 

  19. McGoldrick E, McElvany MD, Butler-Wu S, Pottinger PS, Matsen FA (2015) Substantial cultures of Propionibacterium can be found in apparently aseptic shoulders revised three years or more after the index arthroplasty. J Shoulder Elb Surg 24:31–35. https://doi.org/10.1016/j.jse.2014.05.008

    Article  Google Scholar 

  20. Albert HB, Lambert P, Rollason J, Sorensen JS, Worthington T, Pedersen MB et al (2013) Does nuclear tissue infected with bacteria following disc herniations lead to Modic changes in the adjacent vertebrae? Eur Spine J 22:690–696. https://doi.org/10.1007/s00586-013-2674-z

    Article  PubMed  PubMed Central  Google Scholar 

  21. Agarwal V, Golish SR, Alamin TF (2011) Bacteriologic culture of excised intervertebral disc from immunocompetent patients undergoing single level primary lumbar microdiscectomy. J Spinal Disord Tech 24:397–400. https://doi.org/10.1097/BSD.0b013e3182019f3a

    Article  PubMed  Google Scholar 

  22. Zhou Z, Chen Z, Zheng Y, Cao P, Liang Y, Zhang X et al (2015) Relationship between annular tear and presence of Propionibacterium acnes in lumbar intervertebral disc. Eur Spine J 24:2496–2502. https://doi.org/10.1007/s00586-015-4180-y

    Article  PubMed  Google Scholar 

  23. Capoor MN, Ruzicka F, Schmitz JE, James GA, Machackova T, Jancalek R et al (2017) Propionibacterium acnes biofilm is present in intervertebral discs of patients undergoing microdiscectomy. PLoS ONE. https://doi.org/10.1371/journal.pone.0174518

    Article  PubMed  PubMed Central  Google Scholar 

  24. Holmberg A, Lood R, Morgelin M, Soderquist B, Holst E, Collin M et al (2009) Biofilm formation by Propionibacterium acnes is a characteristic of invasive isolates. Clin Microbiol Infect 15:787–795. https://doi.org/10.1111/j.1469-0691.2009.02747.x

    Article  CAS  PubMed  Google Scholar 

  25. Morgenstern M, Post V, Erichsen C, Hungerer S, Bhren V, Militz M et al (2016) Biofilm formation increases treatment failure in Staphylococcus epidermidis device-related osteomyelitis of the lower extremity in human patients. J Orthop Res 34:1905–1913. https://doi.org/10.1002/jor.23218

    Article  CAS  PubMed  Google Scholar 

  26. Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. APMIS 121:1–58. https://doi.org/10.1111/apm.12099

    Article  CAS  Google Scholar 

  27. Achermann Y, Goldstein EJC, Coenye T, Shirtliff ME (2014) Propionibacterium acnes: from commensal to opportunistic biofilm-associated implant pathogen. Clin Microbiol Rev 27:419–440. https://doi.org/10.1128/CMR.00092-13

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ramage G, Tunney MM, Patrick S, Gorman SP, Nixon JR (2003) Formation of Propionibacterium acnes biofilms on orthopaedic biomaterials and their susceptibility to antimicrobials. Biomaterials 24:3221–3227

    Article  CAS  Google Scholar 

  29. Aleissa S, Parsons D, Grant J, Harder J, Howard J (2011) Deep wound infection following pediatric scoliosis surgery: incidence and analysis of risk factors. Can J Surg 54:263–269. https://doi.org/10.1503/cjs.008210

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rihn JA, Lee JY, Ward WT (2008) Infection after the surgical treatment of adolescent idiopathic scoliosis: evaluation of the diagnosis, treatment, and impact on clinical outcomes. Spine 33:289–294. https://doi.org/10.1097/BRS.0b013e318162016e ((Phila Pa 1976))

    Article  PubMed  Google Scholar 

  31. Shifflett G, Bjerke-Kroll B, Nwachukwu B, Kueper J, Burket J, Sama A et al (2016) Microbiologic profile of infections in presumed aseptic revision spine surgery. Eur Spine J. https://doi.org/10.1007/s00586-016-4539-8

    Article  PubMed  Google Scholar 

  32. Bémer P, Corvec S, Tariel S, Asseray N, Boutoille D, Langlois C et al (2008) Significance of Propionibacterium acnes-positive samples in spinal instrumentation. Spine 33:E971–E976. https://doi.org/10.1097/BRS.0b013e31818e28dc ((Phila Pa 1976))

    Article  PubMed  Google Scholar 

  33. Butler-Wu SM, Burns EM, Pottinger PS, Magaret AS, Rakeman JL, Matsen FA 3rd et al (2011) Optimization of periprosthetic culture for diagnosis of Propionibacterium acnes prosthetic joint infection. J Clin Microbiol 49:2490–2495. https://doi.org/10.1128/JCM.00450-11

    Article  PubMed  PubMed Central  Google Scholar 

  34. Di Silvestre M, Bakaloudis G, Lolli F, Giacomini S (2011) Late-develo** infection following posterior fusion for adolescent idiopathic scoliosis. Eur Spine J 20(Suppl 1):S121–S127. https://doi.org/10.1007/s00586-011-1754-1

    Article  PubMed  Google Scholar 

  35. Maruo K, Berven SH (2014) Outcome and treatment of postoperative spine surgical site infections: predictors of treatment success and failure. J Orthop Sci 19:398–404. https://doi.org/10.1007/s00776-014-0545-z

    Article  CAS  PubMed  Google Scholar 

  36. Ho C, Skaggs DL, Weiss JM, Tolo VT (2007) Management of infection after instrumented posterior spine fusion in pediatric scoliosis. Spine 32:2739–2744. https://doi.org/10.1097/BRS.0b013e31815a5a86 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  37. Dick JC, Bourgeault CA (2001) Notch sensitivity of titanium alloy, commercially pure titanium, and stainless steel spinal implants. Spine 26:1668–1672 (Phila Pa 1976)

    Article  CAS  Google Scholar 

  38. Chen P-Q, Lin S-J, Wu S-S, So H (2003) Mechanical performance of the new posterior spinal implant: effect of materials, connecting plate, and pedicle screw design. Spine 28:881–886. https://doi.org/10.1097/01.BRS.0000058718.38533.B8 (Phila Pa 1976 discussion 887)

    Article  PubMed  Google Scholar 

  39. LaGreca J, Hotchkiss M, Carry P, Messacar K, Nyquist A-C, Erickson M et al (2014) Bacteriology and risk factors for development of late (greater than one year) deep infection following spinal fusion with instrumentation. Spine Deform 2:186–190. https://doi.org/10.1016/j.jspd.2013.12.004

    Article  PubMed  Google Scholar 

  40. Wright ML, Skaggs DL, Matsumoto H, Woon RP, Trocle A, Flynn JM et al (2016) Does the type of metal instrumentation affect the risk of surgical site infection in pediatric scoliosis surgery? Spine Deform 4:206–210. https://doi.org/10.1016/j.jspd.2015.11.002

    Article  PubMed  Google Scholar 

  41. Bruggemann H, Henne A, Hoster F, Liesegang H, Wiezer A, Strittmatter A et al (2004) The complete genome sequence of Propionibacterium acnes, a commensal of human skin. Science 305:671–673. https://doi.org/10.1126/science.1100330

    Article  CAS  PubMed  Google Scholar 

  42. McDowell A, Valanne S, Ramage G, Tunney MM, Glenn JV, McLorinan GC et al (2005) Propionibacterium acnes types I and II represent phylogenetically distinct groups. J Clin Microbiol 43:326–334. https://doi.org/10.1128/JCM.43.1.326-334.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Valanne S, McDowell A, Ramage G, Tunney MM, Einarsson GG, O’Hagan S et al (2005) CAMP factor homologues in Propionibacterium acnes: a new protein family differentially expressed by types I and II. Microbiology 151:1369–1379. https://doi.org/10.1099/mic.0.27788-0

    Article  CAS  PubMed  Google Scholar 

  44. Bains RS, Kardile M, Mitsunaga LK, Bains S, Singh N, Idler C (2017) Postoperative spine dressing changes are unnecessary. Spine Deform 5:396–400. https://doi.org/10.1016/j.jspd.2017.04.005

    Article  PubMed  Google Scholar 

  45. Sweet FA, Roh M, Sliva C (2011) Intrawound application of vancomycin for prophylaxis in instrumented thoracolumbar fusions. Spine 36:2084–2088. https://doi.org/10.1097/BRS.0b013e3181ff2cb1 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  46. Khan NR, Thompson CJ, DeCuypere M, Angotti JM, Kalobwe E, Muhlbauer MS et al (2014) A meta-analysis of spinal surgical site infection and vancomycin powder. J Neurosurg Spine 21:1–10. https://doi.org/10.3171/2014.8.SPINE1445

    Article  CAS  Google Scholar 

Download references

Funding

No financial sources to declare.

Author information

Authors and Affiliations

Authors

Contributions

Study conceptualization: RSB, TLL, MPK, SSB, CCK; Methodology: MPK, SSB, CCK, TLL, RSB; Formal Analysis and investigation: MPK, SSB, CCK, TLL, RSB; Writing of first draft of Manuscript: MPK, SSB, CCK, TLL, RSB; Review, editing and final approval of manuscript: RSB, TLL, MPK, SSB, CCK, TLL; Funding: None; Resources: None; Supervision: RSB.

Corresponding author

Correspondence to Ravi S. Bains.

Ethics declarations

Conflict of interest

No conflicts of interest.

Ethical approval

Institutional IRB approval obtained. The study was conducted in compliance with the Ethical standards.

Informed consent

Study is a retrospective chart review so informed consent has been waived off.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kardile, M.P., Bains, S.S., Kuo, C.C. et al. Is Propionibacterium acnes becoming the most common bacteria in delayed infections following adolescent idiopathic scoliosis surgery?. Spine Deform 9, 757–767 (2021). https://doi.org/10.1007/s43390-020-00250-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43390-020-00250-x

Keywords

Navigation