Log in

The study on the interface characteristics of solid-state electrolyte

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Solid electrolytes for all-solid-state lithium batteries are excellent in terms of stability, and their performance has been improved through many studies. However, due to the interfacial reaction with lithium and sold electrolyte, there is a problem that the performance is deteriorated when used for a long time. In this study, the charge/discharge evaluation of more than 50 cycles was conducted and we analyzed the change Ti4+ to Ti3+ in the solid electrolyte using X-ray photoelectron spectroscopy. Finally, it was confirmed that the performance of the LiNbO3-coated solid electrolyte did not decrease even after long-term use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)

    CAS  Google Scholar 

  2. J.W. Fergus, Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sour. 195(15), 4554–4569 (2010)

    Article  CAS  Google Scholar 

  3. P. Knauth, Inorganic solid Li ion conductors: an overview. Solid State Ion 180(14–16), 911–916 (2009)

    Article  CAS  Google Scholar 

  4. B. Kang, H. Park, S. Woo, M. Kang, A. Kim, Research progress of oxide solid electrolytes for next-generation Li-ion batteries. Ceramist 21(4), 349–365 (2018)

    Article  Google Scholar 

  5. H. Nakano, K. Dokko, J. Sugaya, T. Yasukawa, T. Matsue, K. Kanamura, All-solid-state micro lithium-ion batteries fabricated by using dry polymer electrolyte with micro-phase separation structure. Electrochem. Commun. 9(8), 2013–2017 (2007)

    Article  CAS  Google Scholar 

  6. F. Croce, F. Serraino Fiory, L. Persi, B. Scrosati, A high-rate, long-life, lithium nanocomposite polymer electrolyte battery. Electrochem. Solid-State Lett. 4(8), 121–123 (2001)

    Article  Google Scholar 

  7. K. Takada, M. Tansho, I. Yanase, T. Inada, A. Kajiyama, M. Kouguchi, S. Kondo, M. Watanabe, Lithium ion conduction in LiTi2(PO4)3. Solid State Ion. 139(3–4), 241–247 (2001)

    Article  CAS  Google Scholar 

  8. T. Abe, M. Ohtsuka, F. Sagane, Y. Iriyama, Z. Ogumi, Lithium-ion transfer at the interface between lithium-ion conductive ceramic electrolyte and liquid electrolyte-a key to enhancing the rate capability of lithium-ion batteries. J. Electrochem. Soc. 151(11), 2151–2154 (2004)

    Article  Google Scholar 

  9. A. Hayashi, T. Konishi, K. Tadanaga, M. Tatsumisago, Formation of electrode–electrolyte interface by lithium insertion to SnS–P2S5 negative electrode materials in all-solid-state cells. Solid State Ion. 177(26–32), 2737–2740 (2006)

    Article  CAS  Google Scholar 

  10. A. Atkin et al., Inorganic Chemistry, 4th edn. (OUP Oxford, Oxford, 2006), pp. 729–731

    Google Scholar 

  11. J. Ahn, S. Yoon, Amorphous lithium lanthanum titanate solid electrolyte grown on LiCoO2 cathode by pulsed laser deposition for all-solid-state lithium thin film microbattery. J. Korean Ceram. Soc. 41(8), 593–598 (2004)

    Article  CAS  Google Scholar 

  12. T. Katoh, Y. Inda, M. Baba, Y. Rongbin, Lithium-ion conductive glass-ceramics with composition ratio control and their electrochemical characteristics. J. Ceram. Soc. Jpn. 118(12), 1159–1162 (2010)

    Article  CAS  Google Scholar 

  13. P. Hartmamn, T. Leichtweiss, M. Busche, M. Schneider, M. Reich, J. Sann, P. Adelhelm, J. Janek, Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J. Phys. Chem. C. 117, 21064–21074 (2013)

    Article  Google Scholar 

  14. X. Li, Z. Wang, H. Lin, Y. Liu, Y. Min, F. Pan, Composite electrolytes of pyrrolidone-derivatives-PEO enable to enhance performance of all solid state lithium-ion batteries. Electrochimi. Acta 293, 25–29 (2019)

    Article  CAS  Google Scholar 

  15. C. Tao, M. Gao, B. Yin, B. Li, Y. Huang, G. Xu, J. Bao, A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. Electrochimi. Acta 257(10), 31–39 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a 2-Year Research Grant of Pusan National University

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong-Ki Ryu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, HS., Liu, L., Lee, HJ. et al. The study on the interface characteristics of solid-state electrolyte. J. Korean Ceram. Soc. 58, 373–377 (2021). https://doi.org/10.1007/s43207-021-00110-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00110-y

Keywords

Navigation