Log in

Structural-chemical characterization and potential of sisal bagasse for the production of polyols of industrial interest

  • Original Paper
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Sisal is a potential raw material for the production of bioproducts because it has high contents of cellulose and hemicellulose that generate fermentable sugars and can produce compounds of value for industrial use. The present study evaluates the structural composition of sisal bagasse to use it in the production of arabitol and xylitol. Sisal bagasse was characterized by determination of the moisture, pH, ash, soluble solids, extractives, alpha cellulose, holocellulose, hemicellulose and lignin. Electron microscopy and infrared and X-ray diffraction analyses were also performed. The cell growth of the yeast Debaryomyces hansenii in synthetic media was tested to determine the best conditions for the fermentation in the sisal bagasse hydrolysate. The results showed high amounts of hemicellulose (22.91%) in sisal bagasse biomass when compared to sugarcane and the conversion of hemicellulose, breaking into pentoses in the hydrolysed liquor from the sisal bagasse, was efficient (liquor rich in pentoses). These evidences were obtained through analytical determinations such as SEM and physical analyses of infrared and X-ray diffraction; in addition, the results showed that D. hansenii gave excellent arabitol production (1.14 g L−1) values in the sisal bagasse hydrolysate medium, thus demonstrating the importance of the biomass for obtaining bioproducts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barreto ACH, Rosa DS, Fechine PBA, Mazzetto SE (2011) Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites. Compos Part A 42:492–500

    Article  Google Scholar 

  • Benitez-Guerrero M, López-Beceiro J, Sánchez-Jiménez PE, Pascual-Cosp J (2014) Comparison of thermal behavior of natural and hot-washed sisal fibers based on their main components: cellulose, xylan and lignin. TG–FTIR analysis of volatile products. Thermochim Acta 581:70–86

    Article  CAS  Google Scholar 

  • Botura MB, Dos Santos JDG, Da Silva GD, De Lima HG, De Oliveira JVA, De Almeida MAO, Batatinha MJM, Branco A (2013) In vitro ovicidal and larvicidal activity of Agave sisalana Perr. (Sisal) on gastrointestinal nematodes of goats. Vet Parasitol 192:211–217

    Article  Google Scholar 

  • Brasil (2008) Métodos físico-químicos para análise de alimentos. Instituto Adolfo Lutz, São Paulo

    Google Scholar 

  • Carpio LGT, Souza FS (2017) Optimal allocation of sugarcane bagasse for producing bioelectricity and second generation ethanol in Brazil: scenarios of cost reductions. Renew Energy 111:771–780

    Article  CAS  Google Scholar 

  • Carvalho KCC, Mulinari DR, Voorwald HCJ, Cioffi MOH (2010) Preparação e caracterização de fibras de bagaço de cana modificadas com nanopartículas de óxido de zircônio. 19° Congresso Brasileiro de Engenharia e Ciência dos Materiais—CBECiMat, 7726–7734, Campos do Jordão, SP

  • Chen H (2014) Biotechnology of lignocellulose: theory and practice. Chemical Industry Press, Bei**g and Springer Science Business Media, Dordrecht

    Book  Google Scholar 

  • Debnath M, Pandey M, Sharma R, Thakur GS, Lal P (2010) Biotechnological intervention of Agave sisalana: a unique fiber yielding plant with medicinal property. J Med Plants Res 43:177–187

    Google Scholar 

  • FAOSTAT (2019) Food and Agriculture Organization of the United Nations, Sisal Crops. Available in http://www.fao.org/faostat/en/#data/QC/visualize/. Accessed 10 Feb 2019

  • Ferreira SR, Silva FA, Lima PRL, Filho RDT (2015) Effect of fiber treatments on the sisal fiber properties and fiber-matrix bond in cement based systems. Construct Build Mater 101:730–740

    Article  Google Scholar 

  • Fiore V, Scalici T, Nicoletti F, Vitale G, Prestipino M, Valenza A (2016) A new eco-friendly chemical treatment of natural fibres: effect of sodium bicarbonate on properties of sisal and its epoxy composites. Compos Part B 85:150–160

    Article  CAS  Google Scholar 

  • Girio FM, Amaro C, Azinheira H, Pelica F, Amaral- Collaço MT (2000) Polyols production during single and mixed substrate fermentations in Debaryomyces hansenii. Bioresour Technol 7:245–251

    Article  Google Scholar 

  • Hernández-Meléndez O, Miguel-Cruz F, Montiel C, Hernández-Luna M, Vivaldo-Lima E, Mena-Brito C, Bárzana E (2016) Characterization of blue agave bagasse (BAB) as raw material for bioethanol production processes by gravimetric, thermal, chromatographic, x-ray diffraction, microscopy, and laser light scattering techniques. Bioenergy Res 1–13

  • Himabindu K, Gummadi SN (2015) Effect of kLa and Fed-batch strategies for enhanced production of xylitol by Debaryomyces nepalensis NCYC 3413. Br Biotechnol J 5:24–36

    Article  CAS  Google Scholar 

  • Ishmayanaa S, Kennedya UJ, Learmontha RP (2015) Preliminary evidence of inositol supplementation effect on cell growth, viability and plasma membrane fluidity of the yeast Saccharomyces cerevisiae. Procedia Chem 17:162–169

    Article  Google Scholar 

  • Koganti S, Ju L (2013) Debaryomyces hansenii fermentation for arabitol production. Biochem Eng J 79:112–119

    Article  CAS  Google Scholar 

  • Kordowska-Wiater M (2015) Production of arabitol by yeasts: current status and future prospects. J Appl Microbiol 119:303–314

    Article  CAS  Google Scholar 

  • Kordowska-Wiater M, Targonski Z, Jarosz A (2008) Biotransformation of L-arabinose to arabitol by yeasts from genera Pichia and Candida. Biotechnologia 1:177–188

    Google Scholar 

  • Krishnan KA, Josec C, Ra RK, George KE (2015) Sisal nanofibril reinforced polypropylene/polystyrene blends: morphology, mechanical, dynamic mechanical and water transmission studies. Ind Crops Prod 71:173–184

    Article  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391

    Article  CAS  Google Scholar 

  • Kumdam H, Murthy SN, Gummadi SN (2013) Production of ethanol and arabitol by Debaryomyces nepalensis: influence of process parameters. AMB Express 3:1–12

    Article  Google Scholar 

  • Lima FCS, Silva FLH, Gomes JP, Silva Neto JM (2012) Chemical composition of the cashew apple bagasse and potential use for ethanol production. Adv Chem Eng Sci 2:519–523

    Article  CAS  Google Scholar 

  • Lima CSS, Conceição MM, Silva FLH, Lima EE, Conrado LS, Leão DAS (2013) Characterization of acid hydrolysis of sisal. Appl Energy 102:254–259

    Article  CAS  Google Scholar 

  • López-Linares JC, Romero I, Cara C, Castro E, Mussato SI (2018) Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate. Bioresour Technol 247:736–743

    Article  Google Scholar 

  • Martin AR, Mattoso LHC, Martins MA, Silva ORRF (2009) Caracterização química e estrutural de fibra de sisal da variedade Agave sisalana. Polímeros Ciência e Tecnologia 19(1):40–46

    Article  CAS  Google Scholar 

  • Medeiros LL, Silva FLH, Conceição MM, Conrado LS, Madruga MS, Costa WA, Bezerra TKA (2018) Efficient hydrolysis of cellulosic biomass into free sugars for a future development processing a biorefinery context. Biocatal Agric Biotechnol 16:448–452

    Article  Google Scholar 

  • Miranda CS, Fiuza RP, Carvalho RF, José NM (2015) Efeito dos tratamentos superficiais nas propriedades do bagaço da fibra de piaçava, Attalea funifera Martius. Quim Nova 38:161–165

    CAS  Google Scholar 

  • Mooradian AD, Smith M, Tokuda M (2017) The role of artificial and natural sweeteeners in reducing the consumption of table sugar: a narrative review. Clin Nutr ESPEN 18:1–8

    Article  Google Scholar 

  • Ojeda K, Ávila O, Suárez J, Kafarov V (2011) Evaluation of technological alternatives for process integration of sugarcane bagasse for sustainable biofuels production—part 1. Chem Eng Res Des 89:270–279

    Article  CAS  Google Scholar 

  • Oliveira MB, Abreu HS, Pereira RPW (2009) Teor de Lignina em Plantas de Eucalyptus urophylla S. T. Blake Tratadas com Fitorreguladores. Silva Lusitana 17:51–57

    Google Scholar 

  • Peng X, Zhong L, Ren J, Sun R (2010) Laccase and alkali treatments of cellulose fibre: surface lignin and its influences on fibre surface properties and interfacial behaviour of sisal fibre/phenolic resin composites. Compos A 41:1848–1856

    Article  Google Scholar 

  • Prakasham RS, Rao RS, Hobbs PJ (2009) Current trends in biotechnological production of xylitol and future prospects. Curr Trends Biotechnol Pharm 3:8–36

    CAS  Google Scholar 

  • Rao LV, Goli JK, Gentela J, Koti S (2016) Bioconversion of lignocellulosic to xylitol: na overview. Bioresour Technol 213:299–310

    Article  Google Scholar 

  • Sakdaronnarong C, Jonglertjunya W (2012) Rice straw and sugarcane bagasse degradation mimicking lignocellulose decay in nature: an alternative approach to biorefinery. Sci Asia 38:364–372

    Article  CAS  Google Scholar 

  • Santa Anna LM, Sebastian GV, Menezes EP, Alves TLM, Santos AS, Pereira JRN, Freire DMG (2002) Production of biosurfactants from Pseudomonas aeruginosa PA1 isolated in oil environments. Braz J Chem Eng 19:159–166

    Article  Google Scholar 

  • Soleimani M, Tabil L (2014) Evaluation of biocomposite-based supports for immobilized-cell xylitol production compared with a free-cell system. Biochem Eng J 82:166–173

    Article  CAS  Google Scholar 

  • TAPPI (Technical Association of the Pulp and Paper Industry) (2011) Official test methods (OM), provisional test methods (PM) and useful test methods (UM). One Dunwoody Park, Atlanta

    Google Scholar 

  • Thammasittironga SN, Chatwachirawongc P, Chamduanga T, Thammasittironga A (2017) Evaluation of ethanol production from sugar and lignocellulosic part of energy cane. Ind Crops Prod 108:598–603

    Article  Google Scholar 

  • Xavier FD, Bezerra GS, Santos SFM, Oliveira LSC, Silva FLH, Silva AJO, Conceição MM (2018) Evaluation of the simultaneous production of xylitol and ethanol from sisal fiber. Biomolecules 8:2–13

    Article  Google Scholar 

  • Xu F, Yu J, Tesso T, Dowell FE, Wang D (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energy 104:801–809

    Article  CAS  Google Scholar 

  • Yang ST, Yu M (2013) Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals and polymers, 1st edition. Wiley, New Jersey, pp 7–8

  • Yang L, Lu M, Carl S, Mayer AJ, Cushman JC, Tian E, Lin H (2015) Biomass characterization of Agave and Opuntia as potential biofuel feedstocks. Biomass Bioenergy 76:43–53

    Article  CAS  Google Scholar 

  • Zhang X, Liu L, Lin C (2014) Isolation, structural characterization and antioxidant activity of a neutral polysaccharide from Sisal waste. Food Hydrocolloids 39:10–18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena Lucena de Medeiros.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Medeiros, L.L., da Silva, F.L.H., de Queiroz, A.L.M. et al. Structural-chemical characterization and potential of sisal bagasse for the production of polyols of industrial interest. Braz. J. Chem. Eng. 37, 451–461 (2020). https://doi.org/10.1007/s43153-020-00049-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43153-020-00049-3

Keywords

Navigation