Log in

A potential bio-antioxidant for mineral oil from cashew nutshell liquid: an experimental and theoretical approach

  • Original Paper
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The objective of the present work was to evaluate the antioxidant potential of a mixture of saturated, monoene, diene, and triene cardanols derived from the cashew nutshell liquid in naphthenic mineral oil. A mineral naphthenic oil sample was doped with the cardanols mixture at concentrations of 500, 2000, and 5000 mg/kg and evaluated using differential scanning calorimetry (DSC) and the accelerated oxidative method (PetroOXY), following ASTM standards (E2041-18, E1970-16, E537-12, and E698-18). The addition of cardanols increased the oxidative stability of the mineral oil by a factor of 4 to 5. To evaluate the antioxidant potential of each particular cardanol present in the mixture, structural analysis and specific antioxidant mechanisms were investigated by density functional theory (DFT). Each molecular structure was optimized with the hybrid functional B3LYP with a basis set 6-31G (d, p), and the antiradical mechanisms (HAT, SPLET, and SET-PT) were evaluated. The HAT was the best observed mechanism, standing out for the cardanol monoene that showed presented better antiradical activity. Concerning the global reactivity study, it was concluded that the increase of the unsaturations in the side chain of the molecules contributes significantly to their increased general reactivity. When evaluating the Fukui index, it was confirmed that, for the cardanol monoene, the reactivity prevails in the aromatic ring with an emphasis on oxygen and carbon 4, without the interference of the carbon chain. The results showed that the cardanol mixture may be applied as bio-antioxidant for naphthenic mineral oils.

Graphic abstract

General scheme of the study

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • American Society for Testing and Materials, ASTM E537-12 (2012) Standard test method for the thermal stability of chemicals by differential scanning calorimetry, ASTM International.

  • American Society for Testing and Materials, ASTM E1970-16 (2016) Standard test method for statistical treatment of thermoanalytical data, ASTM International.

  • Araújo SV, Luna FMT, Rola EM Jr, Azevedo DCS, Cavalcante CL Jr (2009) A rapid method for evaluation of the oxidation stability of castor oil FAME: influence of antioxidant type and concentration. Fuel Process Technol 90(10):1272–1277

    Google Scholar 

  • American Society for Testing and Materials, ASTM E2041-18 (2018) Standard test method for estimating kinetic parameters by differential scanning calorimeter using the Borchardt and Daniels, ASTM International.

  • American Society for Testing and Materials, ASTM E698-18 (2018) Standard test method for arrhenius kinetic constants for thermally unstable materials using differential scanning calorimetry and the Flynn/Wall/Ozawa Method, ASTM International.

  • Attia AK, Abdel-Moety MM, Abdel-Hamid SG (2017) Thermal analysis study of antihypertensive drug doxazosin mesylate. Arab J Chem 10(1):S334–S338

    CAS  Google Scholar 

  • Bartmess JE (1994) Thermodynamics of the electron and the proton. J Chem Phys 98(25):6420–6424

    CAS  Google Scholar 

  • Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    CAS  Google Scholar 

  • Cashol Resibras. https://cashol.com.br/2017/#materiais. Accessed 19 Apr 2020

  • Dwivedi G, Verma P, Sharma MP (2018) Optimization of storage stability for Karanja biodiesel using Box-Behnken design. Waste Biomass Valoriz 9(4):645–655

    CAS  Google Scholar 

  • Eddy NO, Ita BI (2011) QSAR, DFT and quantum chemical studies on the inhibition potentials of some carbozones for the corrosion of mild steel in HCl. J Mol Model 17(2):359–376

    CAS  PubMed  Google Scholar 

  • Esmaeili H, Karami A, Maggi F (2018) Essential oil composition, total phenolic and flavonoids contents, and antioxidant activity of Oliveria decumbens Vent. (Apiaceae) at different phenological stages. J Clean Prod 198(10):91–95

    CAS  Google Scholar 

  • Food and Agriculture Organization (FAO). https://www.fao.org/faostat/en/#data/QC. Accessed 19 Apr 2020

  • Fox NJ, Stachowiak G (2007) Vegetable oil based lubricants: a review of oxidation. Tribol Int 40(7):1035–1046

    CAS  Google Scholar 

  • Freitas AR, Almeida LR, Sales FAM, Rios MAS (2015) Green methodology for synthesis of alkylated cardanol based on the green chemical principles. Prog Ind Ecol Int J 9(3):312–325

    Google Scholar 

  • Galano A, Alvarez-Idaboy JR (2013) A computational methodology for accurate predictions of rate constants in solution: application to the assessment of primary antioxidant activity. J Comput Chem 34(28):2430–2445

    CAS  PubMed  Google Scholar 

  • Hehre WJ, Ditchfield R, Pople JA (1972) Self—consistent molecular orbital methods. XII. Further extensions of Gaussian—type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56(5):2257–2261

    CAS  Google Scholar 

  • https://www.chemaxon.com. Accessed 2 Dec 2019.

  • https://www.fiesp.com.br/mobile/noticia/?id=239879. Accessed 2 Dec 2019.

  • Ilyas SU, Pendyala R, Narahari M (2017) Stability and thermal analysis of MWCNT-thermal oil-based nanofluids. Colloids Surf A 527(20):11–22

    CAS  Google Scholar 

  • Kajiyama T, Ohkatsu Y (2002) Effect of meta-substituents of phenolic antioxidants—proposal of secondary substituent effect. Polym Degrad Stab 75(3):535–542

    CAS  Google Scholar 

  • Kleinberg MN, Rios MAS, Buarque HLB, Parente MMV, Cavalcante CL Jr, Luna FMT (2017) Influence of synthetic and natural antioxidants on the oxidation stability of beef tallow before biodiesel production. Waste Biomass Valoriz 10(4):797–803

    Google Scholar 

  • Kök MV, Varfolomeev MA, Nurgaliev DK (2017) Crude oil characterization using TGA-DTA, TGA-FTIR and TGA-MS techniques. J Petrol Sci Eng 154:537–542

    Google Scholar 

  • Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines atoms. Physica 1(1–6):104–113

    Google Scholar 

  • Leopoldini M, Russo N, Toscano M (2011) The molecular basis of working mechanisms of natural polyphenolic antioxidants. Food Chem 125(2):288–306

    CAS  Google Scholar 

  • Lomonaco D, Maia FJN, Mazzetto SE (2013) Thermal evaluation of cashew nutshell liquid as new bioadditives for poly(methyl methacrylate). J Therm Anal Calorim 111:619–626

    CAS  Google Scholar 

  • Lopes AAS, Carneiro EA, Rios MAS, Hiluy Filho JJ, Carioca JOB, Barros GG, Mazzetto SE (2008) Study of antioxidant property of a thiosphorated compound derived from cashew nut shell liquid in hydrogenated naphthenics oils. Braz J Chem Eng 25(1):119–127

    CAS  Google Scholar 

  • Lu T, Chen F (2012a) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    PubMed  Google Scholar 

  • Lu T, Chen F (2012b) Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm. J Mol Graph Model 38:314–322

    PubMed  Google Scholar 

  • Luna FMT, Rocha BS, Rola EM Jr, Albuquerque MCG, Azevedo DCS, Cavalcante CL Jr (2011) Assessment of biodegradability and oxidation stability of mineral, vegetable and synthetic oil samples. Ind Crops Prod 33(3):579–583

    CAS  Google Scholar 

  • Maia FJN, Ribeiro FWP, Rangel JHG, Lomonaco D, Luna FMT, Lima Neto P, Correia AN, Mazzetto SE (2015) Evaluation of antioxidant action by electrochemical and accelerated oxidation experiments of phenolic compounds derived from cashew nut shell liquid. Ind Crops Prod 67:281–286

    CAS  Google Scholar 

  • Martínez-Monteagudo SI, Saldaña MDA, Kennelly JJ (2012) Kinetics of non-isothermal oxidation of anhydrous milk fat rich in conjugated linoleic acid using differential scanning calorimetry. J Therm Anal Calorim 107(3):973–981

    Google Scholar 

  • Masoud MS, Ghareeb DA, Ahmed SS (2017) Synthesis, characterization, spectral, thermal analysis and computational studies of thiamine complexes. J Mol Struct 1137(5):634–648

    CAS  Google Scholar 

  • Micić DM, Ostojić SB, Simonović MB, Krstić G, Pezo LL, Simonović BR (2015) Kinetics of blackberry and raspberry seed oils oxidation by DSC. Thermochim Acta 601(10):39–44

    Google Scholar 

  • Mohammed MN, Atabani AE, Uguz G, Lay CH, Kumar G, Al-Samaraae RR (2018) Characterization of Hemp (Cannabis sativa L.) biodiesel blends with euro diesel, butanol and diethyl ether using FT-IR, UV–Vis, TGA and DSC techniques. Waste Biomass Valoriz 2018:1–17

    Google Scholar 

  • Moreira R, Orsini RR, Vaz JM, Penteado JC (2017) Production of biochar bio-oil and synthesis gas from cashew nut shell by slow pyrolysis. Waste Biomass Valoriz 8(1):217–224

    CAS  Google Scholar 

  • Mothé CG, Vieira CR, Mothé MG (2013) Thermal and surface study of phenolic resin from cashew nut shell liquid cured by plasma treatment. J Therm Anal Calorim 114(2):821–826

    Google Scholar 

  • Neese F (2017) Software update: the ORCA program system, version 4.0, WIREs Computational Molecular Science, 8 (1)

  • Nenadis N, Tsimidou MZ (2012) Contribution of DFT computed molecular descriptors in the study of radical scavenging activity trend of natural hydroxybenzaldehydes and corresponding acids. Food Res Int 48(2):538–543

    CAS  Google Scholar 

  • Neumann A, Jebens T, Wierzbicki V (2008) A method for determining oxidation stability of petrodiesel biodiesel, and blended fuels. Am Lab 40(4):22–26

    CAS  Google Scholar 

  • Nwankwo HU, Olasunkanmi LO, Ebenso EE (2017) Experimental, quantum chemical and molecular dynamic simulations studies on the corrosion inhibition of mild steel by some carbazole derivatives. Sci Rep 7:1–18

    CAS  Google Scholar 

  • Oliveira MA, Yoshida MI, Gomes ECL (2011) Análise térmica aplicada a fármacos e formulações farmacêuticas na indústria farmacêutica. Quím Nova 34:1224–1230

    Google Scholar 

  • Osorio E, Pérez EG, Areche C, Ruiz LM, Cassels BK, Flórez E, Tiznado W (2013) Why is quercetin a better antioxidant than taxifolin? Theoretical study of mechanisms involving activated forms. J Mol Model 19:2165–2172

    CAS  PubMed  Google Scholar 

  • Paiva GMS, Freitas AR, Nobre FX, Leite CMS, Matos JME, Rios MAS (2015) Kinetic and thermal stability study of hydrogenated cardanol and alkylated hydrogenated cardanol. J Therm Anal Calorim 120(3):1617–1625

    CAS  Google Scholar 

  • Parker VD (1992) Homolytic bond (H–A) dissociation free energies in solution. Applications of the standard potential of the (H+/H. bul.) couple. J Am Chem Soc 114(19):7458–7462

    CAS  Google Scholar 

  • Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106(14):4049–4050

    CAS  Google Scholar 

  • Pretsch E, Bühlmann P, Badertscher M (2009) Structure determination of organic compounds: tables of spectral data, 4th edn. Springer, Heidelberg

    Google Scholar 

  • Reda SY (2011) Avaliação da estabilidade de antioxidantes por análise térmica e seu efeito protetor em óleo vegetal aquecido. Food Sci Technol 31(2):475–480

    Google Scholar 

  • Rimarˇcík J, Lukeš V, Klein E, Ilˇcin M (2010) Study of the solvent effect on the enthalpies of homolytic and heterolytic N–H bond cleavage in p-phenylenediamine and tetracyano- p-phenylenediamine. J Mol Struct (Thoechem) 952(30):25–30

    Google Scholar 

  • Rios MAS, Mazzetto SE (2012) Thermal behavior of phosphorus derivatives of hydrogenated cardanol. Fuel Process Technol 96:1–8

    CAS  Google Scholar 

  • Rios MAF, Mazzetto SE, Carioca JOB, Barros GG (2007) Evaluation of antioxidant properties of a phosphorated cardanol compound on mineral oils (NH10 and NH20). Fuel 86(15):2416–2421

    Google Scholar 

  • Rios MAS, Santiago SN, Lopes AAS, Mazzetto SE (2010) Antioxidative activity of 5-n-pentadecyl-2-tert-butylphenol stabilizers in mineral lubricant oil. Energy Fuels 24(5):3285–3291

    CAS  Google Scholar 

  • Rios MAS, Santos FFP, Maia FJN, Mazzetto SE (2013) Evaluation of antioxidants on the thermo-oxidative stability of soybean biodiesel. J Therm Anal Calorim 112:921–927

    CAS  Google Scholar 

  • Silva G, Nakamura NM, Ilha K (2008) Estudo cinético da decomposição térmica do pentaeretritol-tetranitrado (PETN). Quím Nova 31:2060–2064

    Google Scholar 

  • Silva GAM, Da Rós PCM, Souza LTA, Costa APO, Castro HF (2012) Physico-chemical, spectroscopical and thermal characterization of biodiesel obtained by enzymatic route as a tool to select the most efficient immobilized lipase. Braz J Chem Eng 29(1):39–47

    CAS  Google Scholar 

  • Sousa Rios MA, Mazzetto SE (2013) Effect of organophosphate antioxidant on the thermo-oxidative degradation of a mineral oil. J Therm Anal Calorim 111:553–559

    Google Scholar 

  • Speyer RF (1993) Thermal analysis of materials. CRC Press, New York

    Google Scholar 

  • Srivastava S, Gupta P, Sethi A, Singh RP (2016) One pot synthesis of Curcumin-NSAIDs prodrug, spectroscopic characterization, conformational analysis, chemical reactivity, intramolecular interactions and first order hyperpolarizability by DFT method. J Mol Struct 117(5):173–180

    Google Scholar 

  • Stepanić V, Gall TK, Lučić B, Marković Z, Amić D (2013) Bond dissociation free energy as a general parameter for flavonoid radical scavenging activity. Food Chem 141(2):1562–1570

    PubMed  Google Scholar 

  • Syahir AZ, Zulkifli NWM, Masjuki HH, Kalam MA, Alabdulkarem A, Gulzar M, Khuong LS, Harith MH (2017) A review on bio-based lubricants and their applications. J Clean Prod 168(1):997–1016

    CAS  Google Scholar 

  • Wright JS, Johnson ER, DiLabio GA (2001) Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123(6):1173–1183

    CAS  PubMed  Google Scholar 

  • Zhang H-Y (1999) Theoretical methods used in elucidating activity differences of phenolic antioxidants. J Am Oil Chem Soc 76(6):745–748

    CAS  Google Scholar 

  • Zhao H, Feng J, Zhu J, Yu H, Liu Y, Shi P, Wang S, Liu S (2020) Synthesis and application of highly efficient multifunctional vegetable oil additives derived from biophenols. J Clean Prod 242(1):1–9

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge CNPq (459355/2014-7, 406697/2013-2, and 308280/2017-2), and CAPES (Finance Code 001) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. S. Rios.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paula, R.S.F., Vieira, R.S., Luna, F.M.T. et al. A potential bio-antioxidant for mineral oil from cashew nutshell liquid: an experimental and theoretical approach. Braz. J. Chem. Eng. 37, 369–381 (2020). https://doi.org/10.1007/s43153-020-00031-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43153-020-00031-z

Keywords

Navigation