Log in

Modeling the Response of Heart Muscle to Mechanical Stimulation In Vitro

  • Cell Behavior Manipulation (S Willerth, Section Editor)
  • Published:
Current Tissue Microenvironment Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review summarizes current in vitro tools used for develo** engineered heart muscle and studying the response of these tissues to mechanical loading changes that simulate the mechanical cues that heart muscle experiences in vivo.

Recent Findings

Advances in stem cell technology allow researchers to model genetically inherited disease phenotypes in vitro. However, one major challenge for in vitro disease modeling and drug screening is that the cardiomyocytes in simple monolayer culture are normally not exposed to the mechanical stimuli that the heart experiences in vivo. Mechanical loading is critical to heart development and pathophysiology. In vitro models have shown that cells in culture can respond to mechanical conditioning, and in some cases, this condition is critical for maturing stem cell-derived cardiomyocytes.

Summary

Tools from mechanobiology have broadened the view of how physical cues guide cardiomyocyte behavior and function. This review highlights in vitro technologies for develo** cardiac models and studying cardiac responses to mechanical loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science. 2009;324(5935):1673–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Ingber DE. From mechanobiology to developmentally inspired engineering. Philos Trans R Soc B Biol Sci. 2018;373(1759):1–7.

    Article  CAS  Google Scholar 

  3. Spill F, Reynolds DS, Kamm RD, Zaman MH. Impact of the physical microenvironment on tumor progression and metastasis. Curr Opin Biotechnol. 2016 Aug 1;40:41–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Pathak A, Kumar S. Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc Natl Acad Sci U S A. 2012;109(26):10334–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Qiu H, Zhu Y, Sun Z, Trzeciakowski JP, Gansner M, Depre C, et al. Short communication: vascular smooth muscle cell stiffness as a mechanism for increased aortic stiffness with aging. Circ Res. 2010;107(5):615–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Saucerman JJ, Tan PM, Buchholz KS, McCulloch AD, Omens JH. Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nat Rev Cardiol. 2019 Jun;16(6):361–78.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heide F, Walsh S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ma SP, Vunjak-Novakovic G. Tissue-engineering for the study of cardiac biomechanics. J Biomech Eng. 2016;138(2).

  9. Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol. 2006;7(8):589–600.

    Article  PubMed  CAS  Google Scholar 

  10. Hasenfuss G. Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res. 1998;39(1):60–76.

    Article  CAS  PubMed  Google Scholar 

  11. Katz AM. Cardiomyopathy of overload: a major determinant of prognosis in congestive heart failure. N Engl J Med. 1990;322(2):100–10.

    Article  PubMed  CAS  Google Scholar 

  12. Patterson SW, Piper H, Starling EH. The regulation of the heart beat. J Physiol. 1914 Oct 23;48(6):465–513.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. von Anrep G. On the part played by the suprarenals in the normal vascular reactions of the body. J Physiol. 1912;45(5):307–17.

    Article  Google Scholar 

  14. Milani-Nejad N, Janssen PM. Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacol Ther. 2014 Mar 1;141(3):235–49.

    Article  CAS  PubMed  Google Scholar 

  15. •• Toischer K, Rokita AG, Unsöld B, Zhu W, Kararigas G, Sossalla S, et al. Differential cardiac remodeling in preload versus afterload. Circulation. 2010;122(10):993–1003 Developed a mouse model to distinguish how afterload and preload induce different disease phenotypes.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bers D. Excitation-contraction coupling and cardiac contractile force. Springer Science & Business Media; 2001.

  17. Redfern WS, Carlsson L, Davis AS, Lynch WG, MacKenzie I, Palethorpe S, et al. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res. 2003;58(1):32–45.

    Article  PubMed  CAS  Google Scholar 

  18. Nerbonne JM, Nichols CG, Schwarz TL, Escande D. Genetic manipulation of cardiac K+ channel function in mice: what have we learned, and where do we go from here? Circ Res. 2001;89(11):944–56.

    Article  PubMed  CAS  Google Scholar 

  19. Baumgarten G, Kim SC, Stapel H, Vervölgyi V, Bittig A, Hoeft A, et al. Myocardial injury modulates the innate immune system and changes myocardial sensitivity. Basic Res Cardiol. 2006;101(5):427–35.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang B, Li X, Chen C, Jiang W, Lu D, Liu Q, et al. Renal denervation effects on myocardial fibrosis and ventricular arrhythmias in rats with ischemic cardiomyopathy. Cell Physiol Biochem. 2018;46(6):2471–9.

    Article  PubMed  CAS  Google Scholar 

  21. Brandenburger M, Wenzel J, Bogdan R, Richardt D, Nguemo F, Reppel M, et al. Organotypic slice culture from human adult ventricular myocardium. Cardiovasc Res. 2012;93(1):50–9.

    Article  PubMed  CAS  Google Scholar 

  22. Burridge PW, Keller G, Gold JD, Wu JC. Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell. 2012;10(1):16–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A. 2012;109(27):1–10.

    Article  Google Scholar 

  24. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  PubMed  CAS  Google Scholar 

  25. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  PubMed  CAS  Google Scholar 

  26. Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res. 2012;111(3):344–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Bellin M, Marchetto MC, Gage FH, Mummery CL. Induced pluripotent stem cells: the new patient? Nat Rev Mol Cell Biol. 2012;13(11):713–26.

    Article  PubMed  CAS  Google Scholar 

  28. Ueno S, Weidinger G, Osugi T, Kohn AD, Golob JL, Pabon L, et al. Biphasic role for Wnt/β-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci U S A. 2007;104(23):9685–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007;25(9):1015–24.

    Article  PubMed  CAS  Google Scholar 

  30. Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD, et al. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11(8):855–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Xu C, Police S, Rao N, Carpenter MK. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res. 2002;91(6):501–8.

    Article  PubMed  CAS  Google Scholar 

  32. Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, Van den Brink S, Hassink R, et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation. 2003;107(21):2733–40.

    Article  PubMed  CAS  Google Scholar 

  33. Eschenhagen T, Mummery C, Knollmann BC. Modelling sarcomeric cardiomyopathies in the dish: from human heart samples to iPSC cardiomyocytes. Cardiovasc Res. 2015;105(4):424–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Batalov I, Feinberg AW. Differentiation of cardiomyocytes from human pluripotent stem cells using monolayer culture. Biomark Insights. 2015;10:71–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. • Huebsch N, Loskill P, Deveshwar N, Spencer CI, Judge LM, Mandegar MA, et al. Miniaturized iPS-cell-derived cardiac muscles for physiologically relevant drug response analyses. Sci Rep. 2016;6:24726 Demonstrates that engineered heart muscle can be formed without extracellular matrix hydrogels, in a format that is compatible with screening.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Musunuru K, Sheikh F, Gupta RM, Houser SR, Maher KO, Milan DJ, et al. Induced pluripotent stem cells for cardiovascular disease modeling and precision medicine: a scientific statement from the American Heart Association. Circ Genomic Precis Med. 2018;11(1):e000043.

    Article  Google Scholar 

  37. Yang X, Pabon L, Murry CE. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res. 2014;114(3):511–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Robertson C, Tran DD, George SC. Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells. 2013;31(5):829–37.

    Article  PubMed  CAS  Google Scholar 

  39. Allam AH, Thompson RC, Wann LS, Miyamoto MI, El-Din AE, el-Maksoud GA, Soliman MA, Badr I, Amer HA, Sutherland ML, Sutherland JD. Atherosclerosis in ancient Egyptian mummies: the Horus study. JACC Cardiovasc Imaging 2011;4(4):315–327.

  40. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart disease and stroke statistics - 2018 update: a report from the American Heart Association. Circulation. 2018;137:67–492.

  41. Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest. 1975;56(1):56–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. La Gerche A, Burns AT, D’Hooge J, MacIsaac AI, Heidbüchel H, Prior DL. Exercise strain rate imaging demonstrates normal right ventricular contractile reserve and clarifies ambiguous resting measures in endurance athletes. J Am Soc Echocardiogr. 2012;25(3):253–262.e1.

    Article  PubMed  Google Scholar 

  43. Sharma A, McKeithan WL, Serrano R, Kitani T, Burridge PW, del Álamo JC, et al. Use of human induced pluripotent stem cell–derived cardiomyocytes to assess drug cardiotoxicity. Nat Protoc. 2018;13(12):3018–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Gintant G, Burridge P, Gepstein L, Harding S, Herron T, Hong C, et al. Use of human induced pluripotent stem cell-derived Cardiomyocytes in preclinical cancer drug cardiotoxicity testing: a scientific statement from the American Heart Association. Circ Res. 2019;125(10):e75–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature. 2011;471(7337):225–30.

    Article  PubMed  CAS  Google Scholar 

  46. Lan F, Lee AS, Liang P, Sanchez-Freire V, Nguyen PK, Wang L, et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell. 2013;12(1):101–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Tanaka A, Yuasa S, Mearini G, Egashira T, Seki T, Kodaira M, et al. Endothelin-1 induces myofibrillar disarray and contractile vector variability in hypertrophic cardiomyopathy-induced pluripotent stem cell-derived cardiomyocytes. J Am Heart Assoc. 2014;3(6):1–25.

    Article  CAS  Google Scholar 

  48. Sun N, Yazawa M, Liu J, Han L, Sanchez-Freire V, Abilez OJ, et al. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci Transl Med. 2012;4(130).

  49. Kim C, Wong J, Wen J, Wang S, Wang C, Spiering S, et al. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature. 2013;494(7435):105–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Wang G, McCain ML, Yang L, He A, Pasqualini FS, Agarwal A, et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med. 2014;20(6):616–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Dudek J, Cheng IF, Balleininger M, Vaz FM, Streckfuss-Bömeke K, Hübscher D, et al. Cardiolipin deficiency affects respiratory chain function and organization in an induced pluripotent stem cell model of Barth syndrome. Stem Cell Res. 2013;11(2):806–19.

    Article  PubMed  CAS  Google Scholar 

  52. Spirito P, Pelliccia A, Proschan MA, Granata M, Spataro A, Bellone P, et al. Morphology of the “athlete’s heart” assessed by echocardiography in 947 elite athletes representing 27 sports. Am J Cardiol. 1994;74(8):802–6.

    Article  PubMed  CAS  Google Scholar 

  53. La Gerche A, Heidbüchel H, Burns AT, Mooney DJ, Taylor AJ, Pfluger HB, et al. Disproportionate exercise load and remodeling of the athlete’s right ventricle. Med Sci Sports Exerc. 2011;43(6):974–81.

    Article  PubMed  Google Scholar 

  54. Tarazi RC, Levy MN. Cardiac responses to increased afterload state-of-the-art review. Hypertension. 1982;4(3):8–18.

    Article  PubMed  CAS  Google Scholar 

  55. • Ronaldson-Bouchard K, Ma SP, Yeager K, Chen T, Song L, Sirabella D, et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature. 2018;556(7700):239–43 Comprehensive study demonstrating maturation of human stem cell derived cardiomyocytes by culture in tissue-like environments subjected to continuous field pacing.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Klabunde R. Cardiovascular physiology concepts. Lippincott Williams & Wilkins; 2011.

  57. Lilly LS. Pathophysiology of heart disease: a collaborative project of medical students and faculty: Fifth edition. Pathophysiology of Heart Disease: A Collaborative Project of Medical Students and Faculty: Fifth Edition. 2013. 1–461 p.

  58. Leonard A, Bertero A, Powers JD, Beussman KM, Bhandari S, Regnier M, et al. Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues. J Mol Cell Cardiol. 2018;118:147–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Schiattarella GG, Hill JA. Is inhibition of hypertrophy a good therapeutic strategy in ventricular pressure overload? Circulation. 2015;131(16):1435–47.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bian W, Badie N, Himel HD IV, Bursac N. Robust T-tubulation and maturation of cardiomyocytes using tissue-engineered epicardial mimetics. Biomaterials. 2014;35(12):3819–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. •• Ribeiro AJS, Ang YS, Fu JD, Rivas RN, Mohamed TMA, Higgs GC, et al. Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. Vol. 112, Proceedings of the National Academy of Sciences of the United States of America. 2015. 12705–12710 p. A landmark study that uses single cardiomyocytes to investigate the combination of shape (preload) and substrate stiffness (afterload) effects on cardiac physiology.

  62. •• Hirt MN, Sörensen NA, Bartholdt LM, Boeddinghaus J, Schaaf S, Eder A, et al. Increased afterload induces pathological cardiac hypertrophy: a new in vitro model. Basic res Cardiol. 2012;107(6). One of the first studies that simulate a pathological hypertropy of the engineered heart muscle caused by elevated afterload.

  63. Pan J, Fukuda K, Saito M, Matsuzaki J, Kodama H, Sano M, et al. Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. Circ Res. 1999;84(10):1127–36.

    Article  PubMed  CAS  Google Scholar 

  64. Wang N, Tytell JD, Ingber DE. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol. 2009;10(1):75–82.

    Article  PubMed  CAS  Google Scholar 

  65. •• Eschenhagen T, Fink C, Remmers U, Scholz H, Wattchow J, Weil J, et al. Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J. 1997;11(8):683–94. Established in vitro 3D engineered heart muscle system using embryonic chick cardiomyocytes.

  66. Feinberg AW, Ripplinger CM, Van Der Meer P, Sheehy SP, Domian I, Chien KR, et al. Functional differences in engineered myocardium from embryonic stem cell-derived versus neonatal cardiomyocytes. Stem cell reports. 2013;1(5):387–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Boudou T, Legant WR, Mu A, Borochin MA, Thavandiran N, Radisic M, et al. A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. ASME 2012 Summer Bioeng Conf SBC 2012. 2012;18:243–4.

  68. Abilez OJ, Tzatzalos E, Yang H, Zhao MT, Jung G, Zöllner AM, et al. Passive stretch induces structural and functional maturation of engineered heart muscle as predicted by computational modeling. Stem Cells. 2018;36(2):265–77.

    Article  PubMed  CAS  Google Scholar 

  69. • Nunes SS, Miklas JW, Liu J, Aschar-Sobbi R, **ao Y, Zhang B, et al. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat Methods. 2013;10(8):781–7 One of the earliest studies demonstrating that immature, human pluripotent stem cell derived cardiomyocytes can be pushed to a more mature state by continuous electrical pacing.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Zhang D, Shadrin IY, Lam J, **an HQ, Snodgrass HR, Bursac N. Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials. 2013;34(23):5813–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Zhuang J, Yamada KA, Saffitz JE, Kleber AG. Pulsatile stretch remodels cell-to-cell communication in cultured myocytes. Circ Res. 2000;87(4):316–22.

    Article  PubMed  CAS  Google Scholar 

  72. McCain ML, Sheehy SP, Grosberg A, Goss JA, Parker KK. Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip. Proc Natl Acad Sci U S A. 2013;110(24):9770–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Martewicz S, Luni C, Serena E, Pavan P, Chen HSV, Rampazzo A, et al. Transcriptomic characterization of a human in vitro model of Arrhythmogenic cardiomyopathy under topological and mechanical stimuli. Ann Biomed Eng. 2019;47(3):852–65.

    Article  PubMed  Google Scholar 

  74. Mathur A, Loskill P, Shao K, Huebsch N, Hong SG, Marcus SG, et al. Human iPSC-based cardiac microphysiological system for drug screening applications. Sci Rep. 2015;5:1–7.

    Article  CAS  Google Scholar 

  75. •• Fink C, Ergün S, Kralisch D, Remmers U, Weil J, Eschenhagen T. Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J. 2000;14(5):669–79 One of the first studies to test active stretch induced caridac remodeling and physiological change using engineered heart muscle.

    Article  PubMed  CAS  Google Scholar 

  76. Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, et al. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res. 2011;109(1):47–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Yang H, Schmidt LP, Wang Z, Yang X, Shao Y, Borg TK, et al. Dynamic myofibrillar remodeling in live cardiomyocytes under static stretch. Sci Rep. 2016;6(1):1–2.

    Article  CAS  Google Scholar 

  78. Mihic A, Li J, Miyagi Y, Gagliardi M, Li SH, Zu J, et al. The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cell-derived cardiomyocytes. Biomaterials. 2014;35(9):2798–808.

    Article  PubMed  CAS  Google Scholar 

  79. Rogers AJ, Kannappan R, Abukhalifeh H, Ghazal M, Miller JM, El-Baz A, et al. Hemodynamic stimulation using the biomimetic cardiac tissue model (BCTM) enhances maturation of human induced pluripotent stem cell-derived cardiomyocytes. Cells Tissues Organs. 2019;206(1–2):82–94.

    Google Scholar 

  80. Jeung MY, Germain P, Croisille P, El Ghannudi S, Roy C, Gangi A. Myocardial tagging with MR imaging: overview of normal and pathologic findings. Radiographics. 2012;32(5):1381–98.

    Article  PubMed  Google Scholar 

  81. Heras-Bautista CO, Mikhael N, Lam J, Shinde V, Katsen-Globa A, Dieluweit S, et al. Cardiomyocytes facing fibrotic conditions re-express extracellular matrix transcripts. Acta Biomater. 2019;89:180–92.

    Article  PubMed  CAS  Google Scholar 

  82. Hazeltine LB, Simmons CS, Salick MR, Lian X, Badur MG, Han W, et al. Effects of substrate mechanics on contractility of cardiomyocytes generated from human pluripotent stem cells. Int J Cell Biol. 2012;2012.

  83. Clip**er SR, Cloonan PE, Greenberg L, Ernst M, Stump WT, Greenberg MJ. Disrupted mechanobiology links the molecular and cellular phenotypes in familial dilated cardiomyopathy. Proc Natl Acad Sci U S A. 2019;116(36):17831–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. • Truitt R, Mu A, Corbin EA, Vite A, Brandimarto J, Ky B, et al. Increased afterload augments sunitinib-induced cardiotoxicity in an engineered cardiac microtissue model. JACC basic to Transl Sci. 2018;3(2):265–76 Demonstrates afterload enhances certain drug cardiotoxicity using engineered heart muscle system.

    Article  Google Scholar 

  85. Rodriguez AG, Han SJ, Regnier M, Sniadecki NJ. Substrate stiffness increases twitch power of neonatal cardiomyocytes in correlation with changes in myofibril structure and intracellular calcium. Biophys J. 2011;101(10):2455–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. • Ma Z, Huebsch N, Koo S, Mandegar MA, Siemons B, Boggess S, et al. Contractile deficits in engineered cardiac microtissues as a result of MYBPC3 deficiency and mechanical overload. Nature biomedical engineering. 2018;2(12):955–67 Demonstrates that disease phenotypes can only manifest within human stem cell derived cardiomyocytes with a combination of genetic and biophysical stimuli.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Palchesko RN, Zhang L, Sun Y, Feinberg AW. Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS One. 2012;7(12).

  88. Rodriguez ML, Werner TR, Becker B, Eschenhagen T, Hirt MN. Magnetics-based approach for fine-tuning afterload in engineered heart tissues. ACS Biomater Sci Eng. 2019;5(7):3663–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Corbin EA, Vite A, Peyster EG, Bhoopalam M, Brandimarto J, Wang X, et al. Tunable and reversible substrate stiffness reveals a dynamic mechanosensitivity of cardiomyocytes. ACS Appl Mater Interfaces. 2019;11(23):20603–14.

    Article  PubMed  CAS  Google Scholar 

  90. Abdeen AA, Lee J, Bharadwaj NA, Ewoldt RH, Kilian KA. Temporal modulation of stem cell activity using magnetoactive hydrogels. Adv Healthc Mater. 2016;5(19):2536–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Horn MA, Trafford AW. Aging and the cardiac collagen matrix: novel mediators of fibrotic remodelling. J Mol Cell Cardiol. 2016;93:175–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Santiago JA, Pogemiller R, Ogle BM. Heterogeneous differentiation of human mesenchymal stem cells in response to extended culture in extracellular matrices. Tissue Eng - Part A. 2009;15(12):3911–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. van Putten S, Shafieyan Y, Hinz B. Mechanical control of cardiac myofibroblasts. J Mol Cell Cardiol. 2016;93:133–42.

    Article  PubMed  CAS  Google Scholar 

  94. Huebsch N. Translational mechanobiology: designing synthetic hydrogel matrices for improved in vitro models and cell-based therapies. Acta Biomater. 2019;24.

  95. Halbert SP, Bruderer R, Lin TM. In vitro organization of dissociated rat cardiac cells into beating three-dimensional structures. J Exp Med. 1971 Apr 1;133(4):677–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: progress and challenges. Glob Cardiol Sci Pract. 2013;2013(3):38.

    Article  Google Scholar 

  97. Kaiser NJ, Kant RJ, Minor AJ, Coulombe KLK. Optimizing blended collagen-fibrin hydrogels for cardiac tissue engineering with human iPSC-derived cardiomyocytes. ACS Biomater Sci Eng. 2019;5(2):887–99.

    Article  PubMed  CAS  Google Scholar 

  98. Zhang B, Korolj A, Lai BF, Radisic M. Advances in organ-on-a-chip engineering. Nature Reviews Materials. 2018;3(8):257–78.

    Article  Google Scholar 

  99. Pasqualini FS, Agarwal A, O’Connor BB, Liu Q, Sheehy SP, Parker KK. Traction force microscopy of engineered cardiac tissues. PLoS One. 2018;13(3):1–14.

    Article  CAS  Google Scholar 

  100. Kerscher P, Turnbull IC, Hodge AJ, Kim J, Seliktar D, Easley CJ, et al. Direct hydrogel encapsulation of pluripotent stem cells enables ontomimetic differentiation and growth of engineered human heart tissues. Biomaterials. 2016;83:383–95.

    Article  PubMed  CAS  Google Scholar 

  101. Zorlutuna P, Annabi N, Camci-Unal G, Nikkhah M, Cha JM, Nichol JW, et al. Microfabricated biomaterials for engineering 3D tissues. Adv Mater. 2012;24(14):1782–804.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Kumar A, Thomas SK, Wong KC, Sardo VL, Cheah DS, Hou YH, et al. Mechanical activation of noncoding-RNA-mediated regulation of disease-associated phenotypes in human cardiomyocytes. Nature biomedical engineering. 2019;3(2):137–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Sadeghi AH, Shin SR, Deddens JC, Fratta G, Mandla S, Yazdi IK, et al. Engineered 3D cardiac fibrotic tissue to study fibrotic remodeling. Adv Healthc Mater. 2017;6(11).

  104. Pomeroy JE, Helfer A, Bursac N. Biomaterializing the promise of cardiac tissue engineering. Biotechnol Adv. 2019;20.

  105. Visser J, Levett PA, Te Moller NCR, Besems J, Boere KWM, Van Rijen MHP, et al. Crosslinkable hydrogels derived from cartilage, meniscus, and tendon tissue. Tissue Eng - Part A. 2015;21(7–8):1195–206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Williams C, Budina E, Stoppel WL, Sullivan KE, Emani S, Emani SM, et al. Cardiac extracellular matrix–fibrin hybrid scaffolds with tunable properties for cardiovascular tissue engineering. Acta Biomater. 2015;14:84–95.

    Article  PubMed  CAS  Google Scholar 

  107. Huang YL, Walker AS, Miller EW. A photostable silicon rhodamine platform for optical voltage sensing. J Am Chem Soc. 2015;137(33):10767–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Tsutsui H, Karasawa S, Okamura Y, Miyawaki A. Improving membrane voltage measurements using FRET with new fluorescent proteins. Nat Methods. 2008;5(8):683–5.

    Article  PubMed  CAS  Google Scholar 

  109. Tertoolen LG, Braam SR, van Meer BJ, Passier R, Mummery CL. Interpretation of field potentials measured on a multi electrode array in pharmacological toxicity screening on primary and human pluripotent stem cell-derived cardiomyocytes. Biochem Biophys Res Commun. 2018;497(4):1135–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Maoz BM, Herland A, Henry OYF, Leineweber WD, Yadid M, Doyle J, et al. Organs-on-chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities. Lab Chip. 2017;17(13):2294–302.

    Article  PubMed  CAS  Google Scholar 

  111. Tsien R. Fluorescent probes of cell signaling. Annu Rev Neurosci. 1989;12(1):227–53.

    Article  PubMed  CAS  Google Scholar 

  112. Huebsch N, Loskill P, Mandegar MA, Marks NC, Sheehan AS, Ma Z, et al. Automated video-based analysis of contractility and calcium flux in human-induced pluripotent stem cell-derived cardiomyocytes cultured over different spatial scales. Tissue Eng - Part C Methods. 2015;21(5):467–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 2013;499(7458):295–300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Herron TJ, Lee P, Jalife J. Optical imaging of voltage and calcium in cardiac cells & tissues. Circ Res. 2012;110(4):609–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Ossola D, Amarouch MY, Behr P, Vörös J, Abriel H, Zambelli T. Force-controlled patch clamp of beating cardiac cells. Nano Lett. 2015;15(3):1743–50.

    Article  PubMed  CAS  Google Scholar 

  116. Liu J, Sun N, Bruce MA, Wu JC, Butte MJ. Atomic force mechanobiology of pluripotent stem cell-derived cardiomyocytes. PLoS One. 2012;7(5).

  117. Zhao Y, Rafatian N, Feric NT, Cox BJ, Aschar-Sobbi R, Wang EY, et al. A platform for generation of chamber-specific cardiac tissues and disease modeling. Cell. 2019;176(4):913–927.e18.

  118. •• Lind JU, Busbee TA, Valentine AD, Pasqualini FS, Yuan H, Yadid M, et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat Mater. 2017;16(3):303–8 One of the earliest reports of instrumented engineered heart tissues that contain built-in sensors to measure cardiac contractile force non-invasively.

    Article  PubMed  CAS  Google Scholar 

  119. Huebsch N, Charrez B, Siemons B, Boggess SC, Wall S, Charwat V, et al. Metabolically-driven maturation of hiPSC-cell derived heart-on-a-chip. bioRxiv. 2018;1:485169.

    Google Scholar 

  120. Mills RJ, Titmarsh DM, Koenig X, Parker BL, Ryall JG, Quaife-Ryan GA, et al. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc Natl Acad Sci U S A. 2017;114(40):E8372–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We have tried to present a concise review of the current methods of the engineered heart muscle, but we may have missed some significant publications that have contributed to the field. We apologize to any colleagues whose work was not cited in this article. We would like to acknowledge the staff of the Writing Center at Washington University in St. Louis for their feedback on this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel Huebsch.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human Studies/Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cell Behavior Manipulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Huebsch, N. Modeling the Response of Heart Muscle to Mechanical Stimulation In Vitro. Curr. Tissue Microenviron. Rep. 1, 61–72 (2020). https://doi.org/10.1007/s43152-020-00007-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43152-020-00007-8

Keywords

Navigation