Log in

Placental Histopathology and Pregnancy Outcomes in “Early” vs. “Late” Placental Abruption

  • Placenta: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Placenta-associated pregnancy complications (fetal growth restriction and preeclampsia) are traditionally classified as “early” and “late” due to their different pathophysiology, histopathology, and pregnancy outcomes. As placental abruption (PA) represents another placenta-associated complication, we aimed to study if this categorization can be applied to PA as well. Pregnancy and placental reports of all pregnancies complicated by PA between November 2008 and January 2019 were reviewed. Maternal background, pregnancy outcomes, and placental histopathology were compared between cases of PA < 34 weeks (early PA group) vs. > 34 weeks (late PA group). Placental lesions were classified according to the “Amsterdam” criteria. The primary outcome was severe neonatal morbidity (≥ 1 severe neonatal complications: seizures, IVH, HIE, PVL, blood transfusion, NEC, or death). Included were 305 cases of PA, 71 (23.3%) in the early group and 234 (76.7%) in the late group. The early PA group was characterized by higher rates of vaginal bleeding upon presentation (p = 0.003), DIC (p = 0.018), and severe neonatal morbidity (p < 0.001). The late PA group was characterized by a higher rate of urgent Cesarean deliveries (p < 0.001). The early PA group was characterized by higher rates of placental maternal vascular malperfusion (MVM) lesions (p < 0.001), maternal inflammatory response (MIR) lesions (p < 0.001), placental hemorrhage (p < 0.001), and a lower feto-placental ratio (p < 0.001). Using regression analysis, we found that severe neonatal morbidity was independently associated with early abruption (aOR = 5.3, 95% CI = 3.9–7.6), placental MVM (aOR = 1.5, 95% CI = 1.2–1.9), placental MIR (aOR = 1.9, 95% CI = 1.4–2.3), and inversely associated with antenatal corticosteroids (aOR = 0.9, 95% CI = 0.6–0.98). “Early” and “late” PA significantly differ in their presentation, placental pathology, and pregnancy outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tikkanen M. Etiology, clinical manifestations, and prediction of placental abruption. Acta Obstet Gynecol Scand. 2010;89(6):732–40. https://doi.org/10.3109/00016341003686081.

    Article  PubMed  Google Scholar 

  2. Oyelese Y, Ananth CV. Placental abruption. Obstet Gynecol. 2006;108(4):1005–16. https://doi.org/10.1097/01.AOG.0000239439.04364.9a.

    Article  PubMed  Google Scholar 

  3. Ananth CV, Smulian JC, Vintzileos AM. Incidence of placental abruption in relation to cigarette smoking and hypertensive disorders during pregnancy: a meta-analysis of observational studies. Obstet Gynecol. 1999;93(4):622–8. https://doi.org/10.1016/s0029-7844(98)00408-6.

    Article  CAS  PubMed  Google Scholar 

  4. Ananth CV, Smulian JC, Demissie K, Vintzileos AM, Knuppel RA. Placental abruption among singleton and twin births in the United States: risk factor profiles. Am J Epidemiol. 2001;153(8):771–8. https://doi.org/10.1093/aje/153.8.771.

    Article  CAS  PubMed  Google Scholar 

  5. Ananth CV, Wilcox AJ. Placental abruption and perinatal mortality in the United States. Am J Epidemiol. 2001;153(4):332–7. https://doi.org/10.1093/aje/153.4.332.

    Article  CAS  PubMed  Google Scholar 

  6. Karegard M, Gennser G. Incidence and recurrence rate of abruptio placentae in Sweden. Obstet Gynecol. 1986;67(4):523–8.

    CAS  PubMed  Google Scholar 

  7. Ananth CV, Berkowitz GS, Savitz DA, Lapinski RH. Placental abruption and adverse perinatal outcomes. JAMA. 1999;282(17):1646–51. https://doi.org/10.1001/jama.282.17.1646.

    Article  CAS  PubMed  Google Scholar 

  8. Matsuda Y, Maeda T, Kouno S. Comparison of neonatal outcome including cerebral palsy between abruptio placentae and placenta previa. Eur J Obstet Gynecol Reprod Biol. 2003;106(2):125–9. https://doi.org/10.1016/s0301-2115(02)00219-1.

    Article  PubMed  Google Scholar 

  9. Brosens I, Pijnenborg R, Vercruysse L, Romero R. The “great obstetrical syndromes” are associated with disorders of deep placentation. Am J Obstet Gynecol. 2011;204(3):193–201. https://doi.org/10.1016/j.ajog.2010.08.009.

    Article  PubMed  Google Scholar 

  10. Kovo M, Schreiber L, Ben-Haroush A, Gold E, Golan A, Bar J. The placental component in early-onset and late-onset preeclampsia in relation to fetal growth restriction. Prenat Diagn. 2012;32(7):632–7. https://doi.org/10.1002/pd.3872.

    Article  PubMed  Google Scholar 

  11. Kovo M, Schreiber L, Ben-Haroush A, Cohen G, Weiner E, Golan A, et al. The placental factor in early- and late-onset normotensive fetal growth restriction. Placenta. 2013;34(4):320–4. https://doi.org/10.1016/j.placenta.2012.11.010.

    Article  CAS  PubMed  Google Scholar 

  12. Figueras F, Gratacos E. Update on the diagnosis and classification of fetal growth restriction and proposal of a stage-based management protocol. Fetal Diagn Ther. 2014;36(2):86–98. https://doi.org/10.1159/000357592.

    Article  PubMed  Google Scholar 

  13. Aviram A, Sherman C, Kingdom J, Zaltz A, Barrett J, Melamed N. Defining early vs late fetal growth restriction by placental pathology. Acta Obstet Gynecol Scand. 2019;98(3):365–73. https://doi.org/10.1111/aogs.13499.

    Article  PubMed  Google Scholar 

  14. Wojtowicz A, Zembala-Szczerba M, Babczyk D, Kolodziejczyk-Pietruszka M, Lewaczynska O, Huras H. Early- and late-onset preeclampsia: a comprehensive cohort study of laboratory and clinical findings according to the new ISHHP criteria. Int J Hypertens. 2019;2019:4108271. https://doi.org/10.1155/2019/4108271.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mifsud W, Sebire NJ. Placental pathology in early-onset and late-onset fetal growth restriction. Fetal Diagn Ther. 2014;36(2):117–28. https://doi.org/10.1159/000359969.

    Article  PubMed  Google Scholar 

  16. ACOG Practice Bulletin No. 138: inherited thrombophilias in pregnancy. Obstet Gynecol 2013;122(3):706–717. doi:https://doi.org/10.1097/01.AOG.0000433981.36184.4e.

  17. ACOG Practice Bulletin No. 118: antiphospholipid syndrome. Obstet Gynecol 2011;117(1):192–199. doi:https://doi.org/10.1097/AOG.0b013e31820a61f9.

  18. Taylor FBJ, Toh CH, Hoots WK, Wada H, Levi M. Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost. 2001;86(5):1327–30.

    Article  CAS  Google Scholar 

  19. ACOG Practice Bulletin No. 101: ultrasonography in pregnancy. Obstet Gynecol 2009;113(2 Pt 1):451–461. doi:https://doi.org/10.1097/AOG.0b013e31819930b0.

  20. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 2003;26 Suppl 1:S5–20. doi:https://doi.org/10.2337/diacare.26.2007.s5

  21. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013;122(5):1122–31. https://doi.org/10.1097/01.AOG.0000437382.03963.88.

    Article  Google Scholar 

  22. Kehl S, Schelkle A, Thomas A, Puhl A, Meqdad K, Tuschy B, et al. Single deepest vertical pocket or amniotic fluid index as evaluation test for predicting adverse pregnancy outcome (SAFE trial): a multicenter, open-label, randomized controlled trial. Ultrasound Obstet Gynecol. 2016;47(6):674–9. https://doi.org/10.1002/uog.14924.

    Article  CAS  PubMed  Google Scholar 

  23. Dollberg S, Haklai Z, Mimouni FB, Gorfein I, Gordon ES. Birthweight standards in the live-born population in Israel. Isr Med Assoc J. 2005;7(5):311–4.

    PubMed  Google Scholar 

  24. Khong TY, Mooney EE, Ariel I, Balmus NCM, Boyd TK, Brundler MA, et al. Sampling and definitions of placental lesions: Amsterdam placental workshop group consensus statement. Arch Pathol Lab Med. 2016;140(7):698–713. https://doi.org/10.5858/arpa.2015-0225-CC.

    Article  PubMed  Google Scholar 

  25. Redline RW. Classification of placental lesions. Am J Obstet Gynecol. 2015;213(4 Suppl):S21–8. https://doi.org/10.1016/j.ajog.2015.05.056.

    Article  PubMed  Google Scholar 

  26. Weiner E, Schreiber L, Grinstein E, Feldstein O, Rymer-Haskel N, Bar J, et al. The placental component and obstetric outcome in severe preeclampsia with and without HELLP syndrome. Placenta. 2016;47:99–104. https://doi.org/10.1016/j.placenta.2016.09.012.

    Article  PubMed  Google Scholar 

  27. Levy M, Kovo M, Schreiber L, Kleiner I, Grinstein E, Koren L, et al. Pregnancy outcomes in correlation with placental histopathology in subsequent pregnancies complicated by fetal growth restriction. Placenta. 2019;80(March):36–41. https://doi.org/10.1016/j.placenta.2019.04.001.

    Article  PubMed  Google Scholar 

  28. Pinar H, Sung CJ, Oyer CE, Singer DB. Reference values for singleton and twin placental weights. Pediatr Pathol Lab Med J Soc Pediatr Pathol Affil with Int Paediatr Pathol Assoc. 1996;16(6):901–7.

    CAS  Google Scholar 

  29. Fox GE, Van Wesep R, Resau JH, Sun CC. The effect of immersion formaldehyde fixation on human placental weight. Arch Pathol Lab Med. 1991;115(7):726–8.

    CAS  PubMed  Google Scholar 

  30. Gaudineau A. Prevalence, risk factors, maternal and fetal morbidity and mortality of intrauterine growth restriction and small-for-gestational age. J Gynecol Obstet Biol Reprod (Paris). 2013;42(8):895–910. https://doi.org/10.1016/j.jgyn.2013.09.013.

    Article  CAS  Google Scholar 

  31. Arduini D, Rizzo G. Normal values of Pulsatility Index from fetal vessels: a cross-sectional study on 1556 healthy fetuses. J Perinat Med. 1990;18(3):165–72. https://doi.org/10.1515/jpme.1990.18.3.165.

    Article  CAS  PubMed  Google Scholar 

  32. Muresan D, Rotar IC, Stamatian F. The usefulness of fetal Doppler evaluation in early versus late onset intrauterine growth restriction. Review of the literature. Med Ultrason. 2016;18(1):103–9. https://doi.org/10.11152/mu.2013.2066.181.dop.

    Article  PubMed  Google Scholar 

  33. Baschat AA, Gembruch U. The cerebroplacental Doppler ratio revisited. Ultrasound Obstet Gynecol. 2003;21(2):124–7. https://doi.org/10.1002/uog.20.

    Article  CAS  PubMed  Google Scholar 

  34. Spinillo A, Gardella B, Adamo L, Muscettola G, Fiandrino G, Cesari S. Pathologic placental lesions in early and late fetal growth restriction. Acta Obstet Gynecol Scand. 2019;98(12):1585–94. https://doi.org/10.1111/aogs.13699.

    Article  PubMed  Google Scholar 

  35. Crispi F, Llurba E, Dominguez C, Martin-Gallan P, Cabero L, Gratacos E. Predictive value of angiogenic factors and uterine artery Doppler for early- versus late-onset pre-eclampsia and intrauterine growth restriction. Ultrasound Obstet Gynecol. 2008;31(3):303–9. https://doi.org/10.1002/uog.5184.

    Article  CAS  PubMed  Google Scholar 

  36. Valensise H, Vasapollo B, Gagliardi G, Novelli GP. Early and late preeclampsia: two different maternal hemodynamic states in the latent phase of the disease. Hypertens (Dallas, Tex 1979). 2008;52(5):873–80. https://doi.org/10.1161/HYPERTENSIONAHA.108.117358.

    Article  CAS  Google Scholar 

  37. Tay J, Foo L, Masini G, et al. Early and late preeclampsia are characterized by high cardiac output, but in the presence of fetal growth restriction, cardiac output is low: insights from a prospective study. Am J Obstet Gynecol. 2018;218(5):517.e1–517.e12. https://doi.org/10.1016/j.ajog.2018.02.007.

    Article  Google Scholar 

  38. Vaddamani S, Keepanasseril A, Pillai AA, Kumar B. Maternal cardiovascular dysfunction in women with early onset preeclampsia and late onset preeclampsia: a cross-sectional study. Pregnancy Hypertens. 2017;10:247–50. https://doi.org/10.1016/j.preghy.2017.10.010.

    Article  PubMed  Google Scholar 

  39. Lisonkova S, Joseph KS. Incidence of preeclampsia: risk factors and outcomes associated with early- versus late-onset disease. Am J Obstet Gynecol. 2013;209(6):544.e1–544.e12. https://doi.org/10.1016/j.ajog.2013.08.019.

    Article  Google Scholar 

  40. Lisonkova S, Sabr Y, Mayer C, Young C, Skoll A, Joseph KS. Maternal morbidity associated with early-onset and late-onset preeclampsia. Obstet Gynecol. 2014;124(4):771–81. https://doi.org/10.1097/AOG.0000000000000472.

    Article  PubMed  Google Scholar 

  41. van der Merwe JL, Hall DR, Wright C, Schubert P, Grove D. Are early and late preeclampsia distinct subclasses of the disease--what does the placenta reveal? Hypertens Pregnancy. 2010;29(4):457–67. https://doi.org/10.3109/10641950903572282.

    Article  PubMed  Google Scholar 

  42. Herzog EM, Eggink AJ, Reijnierse A, Kerkhof MAM, de Krijger RR, Roks AJM, et al. Impact of early- and late-onset preeclampsia on features of placental and newborn vascular health. Placenta. 2017;49:72–9. https://doi.org/10.1016/j.placenta.2016.11.014.

    Article  PubMed  Google Scholar 

  43. Wikstrom A-K, Nash P, Eriksson UJ, Olovsson MH. Evidence of increased oxidative stress and a change in the plasminogen activator inhibitor (PAI)-1 to PAI-2 ratio in early-onset but not late-onset preeclampsia. Am J Obstet Gynecol. 2009;201(6):597.e1–8. https://doi.org/10.1016/j.ajog.2009.06.024.

    Article  CAS  Google Scholar 

  44. Tobinaga CM, Torloni MR, Gueuvoghlanian-Silva BY, Pendeloski KPT, Akita PA, Sass N, et al. Angiogenic factors and uterine Doppler velocimetry in early- and late-onset preeclampsia. Acta Obstet Gynecol Scand. 2014;93(5):469–76. https://doi.org/10.1111/aogs.12366.

    Article  CAS  PubMed  Google Scholar 

  45. Villa PM, Hamalainen E, Maki A, et al. Vasoactive agents for the prediction of early- and late-onset preeclampsia in a high-risk cohort. BMC Pregnancy Childbirth. 2013;13:110. https://doi.org/10.1186/1471-2393-13-110.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Veerbeek JHW, Hermes W, Breimer AY, et al. Cardiovascular disease risk factors after early-onset preeclampsia, late-onset preeclampsia, and pregnancy-induced hypertension. Hypertens (Dallas, Tex 1979). 2015;65(3):600–6. https://doi.org/10.1161/HYPERTENSIONAHA.114.04850.

    Article  CAS  Google Scholar 

  47. Weiner E, Feldstein O, Tamayev L, Grinstein E, Barber E, Bar J, et al. Placental histopathological lesions in correlation with neonatal outcome in preeclampsia with and without severe features. Pregnancy Hypertens. 2018;12:6–10. https://doi.org/10.1016/j.preghy.2018.02.001.

    Article  PubMed  Google Scholar 

  48. Paules C, Youssef L, Rovira C, Crovetto F, Nadal A, Peguero A, et al. Distinctive patterns of placental lesions in pre-eclampsia vs small-for-gestational age and their association with fetoplacental Doppler. Ultrasound Obstet Gynecol. 2019;54(5):609–16. https://doi.org/10.1002/uog.20350.

    Article  CAS  PubMed  Google Scholar 

  49. Sehgal A, Dahlstrom JE, Chan Y, Allison BJ, Miller SL, Polglase GR. Placental histopathology in preterm fetal growth restriction. J Paediatr Child Health. 2019;55(5):582–7. https://doi.org/10.1111/jpc.14251.

    Article  PubMed  Google Scholar 

  50. Redline RW. The clinical implications of placental diagnoses. Semin Perinatol. 2015;39(1):2–8. https://doi.org/10.1053/j.semperi.2014.10.002.

    Article  PubMed  Google Scholar 

  51. Nijman TAJ, van Vliet EOG, Benders MJN, Mol BWJ, Franx A, Nikkels PGJ, et al. Placental histology in spontaneous and indicated preterm birth: a case control study. Placenta. 2016;48:56–62. https://doi.org/10.1016/j.placenta.2016.10.006.

    Article  PubMed  Google Scholar 

  52. Schlumpf R, Marincek B, Von Schulthess G, Decurtins M, Largiader F. Magnetic resonance imaging and computed tomography in long-term-functioning duct-occluded pancreas allotransplants. Diabetes. 1989;38(Suppl 1):24–6. https://doi.org/10.2337/diab.38.1.s24.

    Article  PubMed  Google Scholar 

  53. Raghavan R, Helfrich BB, Cerda SR, Ji Y, Burd I, Wang G, et al. Preterm birth subtypes, placental pathology findings, and risk of neurodevelopmental disabilities during childhood. Placenta. 2019;83:17–25. https://doi.org/10.1016/j.placenta.2019.06.374.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bingham A, Gundogan F, Rand K, Laptook AR. Placental findings among newborns with hypoxic ischemic encephalopathy. J Perinatol. 2019;39(4):563–70. https://doi.org/10.1038/s41372-019-0334-9.

    Article  PubMed  Google Scholar 

  55. Straughen JK, Misra DP, Divine G, Shah R, Perez G, VanHorn S, et al. The association between placental histopathology and autism spectrum disorder. Placenta. 2017;57:183–8. https://doi.org/10.1016/j.placenta.2017.07.006.

    Article  PubMed  Google Scholar 

  56. Redline RW. Correlation of placental pathology with perinatal brain injury. Surg Pathol Clin. 2013;6(1):153–80. https://doi.org/10.1016/j.path.2012.11.005.

    Article  PubMed  Google Scholar 

  57. Crovetto F, Triunfo S, Crispi F, Rodriguez-Sureda V, Dominguez C, Figueras F, et al. Differential performance of first-trimester screening in predicting small-for-gestational-age neonate or fetal growth restriction. Ultrasound Obstet Gynecol. 2017;49(3):349–56. https://doi.org/10.1002/uog.15919.

    Article  CAS  PubMed  Google Scholar 

  58. Liu Z, Tang Z, Li J, Yang Y. Effects of placental inflammation on neonatal outcome in preterm infants. Pediatr Neonatol. 2014;55(1):35–40. https://doi.org/10.1016/j.pedneo.2013.05.007.

    Article  PubMed  Google Scholar 

  59. Roberts JM, Hubel CA. The two stage model of preeclampsia: variations on the theme. Placenta. 2009;30(Suppl A):S32–7. https://doi.org/10.1016/j.placenta.2008.11.009.

    Article  CAS  PubMed  Google Scholar 

  60. Ness RB, Roberts JM. Heterogeneous causes constituting the single syndrome of preeclampsia: a hypothesis and its implications. Am J Obstet Gynecol. 1996;175(5):1365–70. https://doi.org/10.1016/s0002-9378(96)70056-x.

    Article  CAS  PubMed  Google Scholar 

  61. von Dadelszen P, Magee LA, Roberts JM. Subclassification of preeclampsia. Hypertens Pregnancy. 2003;22(2):143–8. https://doi.org/10.1081/PRG-120021060.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eran Weiner.

Ethics declarations

Approval was obtained from the Local Ethics Committee (decision number 0102-15-WOMC).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonen, N., Levy, M., Kovo, M. et al. Placental Histopathology and Pregnancy Outcomes in “Early” vs. “Late” Placental Abruption. Reprod. Sci. 28, 351–360 (2021). https://doi.org/10.1007/s43032-020-00287-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00287-3

Keywords

Navigation