Log in

Recent population expansion in wild gaur (Bos gaurus gaurus) as revealed by microsatellite markers

  • Original Article
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

The Indian bison, commonly called gaur (Bos gaurus gaurus), is native to South and Southeast Asia. In all its distribution ranges, the conservation status of the gaur lies between “vulnerable” and “endangered”. In this study, we genotyped 70 free-ranging wild gaurs from the Melghat Tiger Reserve (MTR), one of the first nine tiger reserves created in 1972 for tiger conservation in India. Fourteen microsatellite loci were genotyped in DNA extracted from the dung samples. An observed average heterozygosity of 0.726, evidence of gene flow was observed in the wild gaur population sampled from 11 locations in MTR. The effective population size (Ne) was 52.7. Approximate Bayesian computation analysis revealed population decline in the wild gaur population with the rise of mature Indus civilization ~ 2880 years ago. The population decline intensified during the reign of the medieval Monarch, extending further with the arrival of the British ~ 250 years ago. Our analyses detect population recovery in the free-ranging gaur population of MTR around 66 years ago, a time period coinciding with the independence of India followed by the implementation of the Indian wildlife protection act in the year 1972. The genetic data were discussed in the background of anthropology, archaeology and history of the Indian subcontinent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allchin B, Allchin FR (1997) Origins of a civilization: the prehistory and early archaeology of South Asia. Viking, New York

    Google Scholar 

  • Atkulwar A, Farah S, Gadhikar Y, Baig M (2020) Mitochondrial DNA diversity in wild gaur (Bos gaurus gaurus): evidence from extant and historical samples. Mitochondrial DNA Part B 5(2):1556–1560. https://doi.org/10.1080/23802359.2020.1742589

    Article  Google Scholar 

  • Baig M, Mitra B, Qu K, Peng M, Ahemad I, Miao Y, Zang L, Zhang Y (2013) Mitochondrial DNA diversity and Origin of Bos frontalis. Curr Sci 104:1

    Google Scholar 

  • Basu A, Mukherjee N, Roy S, Sengupta S, Banerjee S, Chakraborty M, Dey B, Roy M, Roy B, Bhattacharyya NP, Roychoudhury S (2003) Majumder PP (2003) Ethnic India: a genomic view, with special reference to peopling and structure. Genome Res 13:2277–2290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162:2025–2035

    Article  PubMed  PubMed Central  Google Scholar 

  • Beja-Pereira A, Oliveira R, Alves PC, Schwartz MK, Luikart G (2009) Advancing ecological understanding through technological transformations in noninvasive genetics. Mol Ecol Resourc 9(5):1279–1301

    Article  Google Scholar 

  • Bertorelle G, Benazzo A, Mona S (2010) ABC as a flexible framework to estimate demography over space and time: some cons, many pros. Mol Ecol 19:2609–2625

    Article  CAS  PubMed  Google Scholar 

  • Biebach I, Keller LF (2012) Genetic variation depends more on admixture than number of founders in reintroduced Alpine ibex populations. Biol Cons 147:197–203

    Article  Google Scholar 

  • Bohmann K, Evans A, Thomas M, Gilbert P, Gary R, Carvalho CS, Knapp M, Douglas WY, de Mark B (2014) Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol 29(6):358–367

    Article  PubMed  Google Scholar 

  • Byers O, Hedges S, Seal US (1995) Asian Wild Cattle Conservation Assessment and Management Plan workshop Working Document. Apple Valley, MN, USA: IUCN/SSC Conservation Breeding Specialist Group. https://www.cbsg.org/sites/cbsg.org/files/documents/Asian%20Wild%20Cattle%20CAMP%201995.pdf

    Google Scholar 

  • Cardillo M, Mace GM, Jones KE, Bielby J, Bininda-Emonds ORP, Sechrest W, Orme CD, Purvis A (2005) Multiple causes of high extinction risk in large mammal species. Science 309(5738):1239–1241

    Article  CAS  PubMed  Google Scholar 

  • Chaubey G, Metspalu M, Kivisild T (2006) Villems R (2006) Peopling of South Asia: investigating the caste-tribe continuum in India. BioEssays. 29:91–100

    Article  CAS  Google Scholar 

  • Choudhury A (2002) Distribution and conservation of the Gaur Bos gaurus in the Indian Subcontinent. Mammal Rev 32:199–226

    Article  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornuet JM, Santo F, Beaumont MA, Robert CP, Marin JM, Balding DJ, Guillemaud T, Estoup A (2008) Inferring population history with DIYABC: a user-friendly approach to Approximate Bayesian Computations. Bioinformatics 24:2713–2719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornuet JM, Ravign V, Estoup A (2010) Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0). BMC Bioinform 11:401

    Article  CAS  Google Scholar 

  • Costa V, Rosenbom S, Monteiro R, Rourke SMO, Pereira A (2016) Improving DNA quality extracted from fecal samples—a method to improve DNA yield. Eur J Wildl Res. https://doi.org/10.1007/s10344-016-1058-1

    Article  Google Scholar 

  • Demir E, Balcioğlu MS (2019) Genetic diversity and population structure of four cattle breeds raised in Turkey using microsatellite markers. Czech J Anim Sci 64:411–419

    Article  Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator V2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214

    Article  CAS  PubMed  Google Scholar 

  • Dorji T, Mannen H, Namikawa T, Inamura T, Kawamoto Y (2010) Diversity and phylogeny of mitochondrial DNA isolated from mithun Bos frontalis located in Bhutan. Anim Genet 41:554–556

    Article  CAS  PubMed  Google Scholar 

  • Du Y, Zou X, Xu Y, Guo X, Li S, Zhang X, Su M, Ma J (2016) Microsatellite loci analysis reveals post-bottleneck recovery of genetic diversity in the tibetan antelope. Sci Rep 6:35501. https://doi.org/10.1038/srep35501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Earl DA, Von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Estoup A, Jarne P, Cornuet JM (2002) Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol Ecol 11:1591–1604

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnault S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure. A Simulation Study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol Bioinforma 1:47–50

    Article  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadgil M, Joshi NV, Shambu Prasad UV, Manoharan S, Patil S (1997) Peopling of India. In: Balasubramanian D, Appaji NR (eds) The Indian Human Heritage, Hyderabad Universities Press, India, pp 100–129

    Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    Article  CAS  PubMed  Google Scholar 

  • Gautam R (2011) Baigas: The Hunter Gatherers of Central India. Readworthy Publications, New Delhi, India

    Google Scholar 

  • Gou X, Wang Y, Yang S, Deng D, Mao H (2010) Genetic diversity and origin of gayal and cattle in Yunnan revealed by mtDNA control region and SRY gene sequence variation. J Anim Breed Genet 127:154–160

    Article  CAS  PubMed  Google Scholar 

  • Groombridge B (ed) (1993) The 1994 IUCN Red List of Threatened Animals. IUCN, Gland, Switzerland and Cambridge, UK

    Google Scholar 

  • Groves C, Grubb P (2011) Ungulate Taxonomy. The Johns Hopkins University Press, Baltimore, USA

    Book  Google Scholar 

  • Hanski I (1989) Population biology of Eurasian shrews: Towards a synthesis. Ann Zool Fennici 26:469–479

    Google Scholar 

  • ICZN: Opinion, (2027) (Case 3010) (2003) Usage of 17 specific names based on wild species, which are pre-dated by or contemporary with those based on domestic animals (Lepidoptera, Osteichthyes, Mammalia): conserved. Bull Zool Nomenclature 2003(60):81–84

    Google Scholar 

  • IUCN Red List of Threatened Species. https://www.iucnredlist.org/

  • Janes JK, Miller JM, Dupuis JR, Malenfant RM, Gorrell JC, Cullingham CI, Andrew RL (2017) The K = 2 conundrum. Mol Ecol 26(14):3594–3602

    Article  PubMed  Google Scholar 

  • Joshi A, Vaidyanathan S, Mondol S, Edgaonkar A, Ramakrishnan U (2013) Connectivity of Tiger (Panthera tigris) Populations in the Human-Influenced Forest Mosaic of Central India. PLoS ONE 8(11):e77980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genoty** error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Karanth KU, Kumar NS (2005) Distribution and dynamics of tiger and prey populations in Maharashtra, India. Final Technical Report. Centre for Wildlife Studies, Bangalore, India.

    Google Scholar 

  • Karanth KU, Nichols JD, Kumar NS, Link WA, Hines JE (2004) Tigers and their prey: Predicting carnivore densities from prey abundance. Proc Natl Acad Sci USA 101:4854–4858. https://doi.org/10.1073/pnas.0306210101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khaire D, Atkulwar A, Farah S, Baig M (2016) Mitochondrial DNA analyses revealed low genetic diversity in the endangered Indian wild ass Equus hemionus khur. Mitochondrial DNA Part A12:1–6

    Google Scholar 

  • Khaire D, Atkulwar A, Farah S, Baig M (2017) Low genetic diversity of the endangered Indian wild ass Equus hemionus khur, as revealed by microsatellite analyses. J Genet 96 e31–e34. https://doi.org/10.1007/s12041-017-0784-9

  • Kumar S, Padmanabham PB, Ravuri RR, Uttaravalli K, Koneru P, Mukherjee PA, Das B, Kotal M, Xaviour D, Saheb SY (2008) and Rao VR (2008) The earliest settler’s antiquity and evolutionary history of Indian populations: evidence from M2 mtDNA lineage. BMC Evol Biol 8(1):230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar V, Palugulla VR, Kokkiligadda A, Shivaji S, Umapathy G (2014) Non-invasive assessment of reproductive status and stress in captive Asian elephants in three south Indian zoos. Gen Comparative Endocrinol 201:37–44. https://doi.org/10.1016/j.ygcen.2014.03.024

  • Latch EK, Dharmarajan G, Glaubitz JC, Rhodes OE Jr (2006) Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conserv Genet 7:295–302. https://doi.org/10.1007/s10592-005-9098-1

    Article  Google Scholar 

  • Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237

    Article  Google Scholar 

  • Madilindi MA, Banga CB, Bhebhe E, Sanarana YP, Nxumalo KS, Taela MG, Mapholi NO (2019) Genetic differentiation and population structure of four Mozambican indigenous cattle populations. Livestock Res Rural Dev 31(4) http://www.lrrd.org/lrrd31/4/matom31047.html

  • Maudet C, Luikart G, Taberlet P (2002) Genetic diversity and assignment tests among seven French cattle breeds based on microsatellite DNA analysis. J Anim Sci 80:942–950

    Article  CAS  PubMed  Google Scholar 

  • Majumder PP (2001) Ethnic populations of India as seen from an evolutionary perspective. J Biosci 26(Suppl 4):533–545

    Article  CAS  PubMed  Google Scholar 

  • Mamogobo MD, Mapholi NO, Nephawe KA, Nedambale TL, Mpofu TJ, Sanarana YP, Mtileni BJ (2020) Genetic characterisation of non-descript cattle populations in communal areas of South Africa. Anim Prod Sci 61(1):84–91

    Article  CAS  Google Scholar 

  • McNeely JA, Gadgil M, Leveque C, Padoch C, Redford K (1995) Human influences on biodiversity. In: Heywood VH, Watson RT (eds) Global Biodiversity Assessment Cambridge University Press, pp 711–821

    Google Scholar 

  • Meffe GK, Carroll CR (1997) Principles of Conservation Biology. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Misra VN (2001) Prehistoric human colonization of India. J Biosci 26(4):491–531

    Article  CAS  PubMed  Google Scholar 

  • Misra VN, Bellwood P (1985) Recent advances in Indo-Pacific prehistory. Proceedings of the international symposium, Poona 

    Google Scholar 

  • Mondol S, Karanth KU, Ramakrishnan U (2009) Why the Indian Subcontinent Holds the Key to Global Tiger Recovery. PLoS Genet 5:e1000585. https://doi.org/10.1371/journal.pgen.1000585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee A, Mukherjee S, Dhakal R, Mech M, Longkumer I, Haque N, Vupru K, Khate K, Jamir IY, Pongen P, Rajkhowa C (2018) High-density genoty** reveals genomic characterization, population structure and genetic diversity of Indian Mithun (Bos frontalis). Sci Rep 8(1):1. https://doi.org/10.1038/s41598-018-28718-x

    Article  CAS  Google Scholar 

  • Mukesh Sharma LK, Charoo SA, Sathyakumar S (2015) Conflict Bear Translocation: Investigating Population Genetics and Fate of Bear Translocation in Dachigam National Park, Jammu and Kashmir India. PLoS ONE 10(8):e0132005. https://doi.org/10.1371/journal.pone.0132005

    Article  CAS  Google Scholar 

  • Nguyen TT, Genin IS, Bui LC, Voegeli P, Stranzinger G, Renard JP, Maillard JC, Nguyen BX (2007) Genomic conservation of cattle microsatellite loci in wild gaur (Bos gaurus) and current genetic status of this species in Vietnam. BMC Genet 8:77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Heredity 1999(90):4

    Google Scholar 

  • Possehl GL (2003) The Indus civilization: a contemporary perspective. Vistaar Publications, New Delhi

    Google Scholar 

  • Prater PH (1980) The Book of India Animals. Bombay National History Society, Bombay

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of Population Structure Using Multilocus Genotype Data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahal O, Aissaoui C, Ata N, Yilmaz O, Cemal I, Ameur A, Gaouar S (2020) Genetic characterization of four Algerian cattle breeds using microsatellite markers. Anim Biotechnol. https://doi.org/10.1080/10495398.2020.1746321

    Article  PubMed  Google Scholar 

  • Rangarajan M (2006) India’s Wildlife History: an Introduction. Permanent Black, New Delhi, India

    Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (Version 1.2): Population Genetics Software for Exact Tests and Ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Reddy PA, Gour DS, Bhavanishankar M, Jaggi K, Hussain SM, Harika K, Shivaji S (2012) Genetic evidence of tiger population structure and migration within an isolated and fragmented landscape in Northwest India. PLoS ONE 7:e29827. https://doi.org/10.1371/journal.pone.0029827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert CP, Cornuet JM, Marin JM, Pillai NS (2011) Lack of confidence in approximate Bayesian computation model choice. Proc Natl Acad Sci USA 108:15112–15117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romaino SM, Fazly-Ann ZA, Loo SS, Hafiz MM, Hafiz MD, Iswadi MI, Kashiani P, Rosli MK, Syed-Shabthar SM, Md-Zain BM, Abas-Mazni O (2014) Species identification of malayan gaur, kedah-kelantan and bali cattle using polymerase chain reaction-restricted fragment length polymorphism. Genet Mol Res. 13(1):406–14. https://doi.org/10.4238/2014

    Article  CAS  PubMed  Google Scholar 

  • Rosli MK, Zakaria SS, Syed-Shabthar SM, Zainal ZZ, Shukor MN, Mahani MC, Abas-Mazni O, Md-Zain BM (2011) Phylogenetic relationships of malayan gaur with other species of the genus bos based on cytochrome b gene dna sequences. Genet Mol Res 10(1):482–493. https://doi.org/10.4238/vol10-1gmr1002

    Article  CAS  PubMed  Google Scholar 

  • Rovelli G, Ceccobelli S, Perini F, Demir E, Mastrangelo S, Conte G, Abeni F, Marletta D, Ciampolini R, Cassandro M, Bernabucci U, Lasagna E (2020) The genetics of phenotypic plasticity in livestock in the era of climate change: a review. Ital J Anim Sci 19(1):997–1014. https://doi.org/10.1080/1828051X.2020.1809540

    Article  CAS  Google Scholar 

  • Sankar K, Pabla HS, Patil CK, Nigam P, Qureshi Q, Navaneethan B, Manjreakar M, Virkar PS, Mondal K (2013) Home range, habitat use and food habits of re-introduced gaur (Bosgaurusgaurus) in Bandhavgarh Tiger Reserve Central India. Trop Conserv Sci 6(1):50–69

    Article  Google Scholar 

  • Shan HN, Chen IF, Song CC, Cao HM, Lo LH, Zeng YC (1980) (1980) Comparative studies on the chromosomes of five species of cattle of the genus Bosin China. Zool Res 17:1175–1181

    Google Scholar 

  • Sharma S, Dutta T, Maldonado JE, Wood TC, Panwar HS, Seidensticker J (2013) Spatial genetic analysis reveals high connectivity of tiger (Panthera tigris) populations in the Satpura-Maikal landscape of Central India. Ecol Evol 3:48–60

    Article  PubMed Central  Google Scholar 

  • Storz JF, Beaumont MA (2002) Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evol 56:154–166

    CAS  Google Scholar 

  • Świsłocka M, Czajkowska M, Duda N, Ratkiewicz M (2015) Admixture promotes genetic variation in bottlenecked moose populations in eastern Poland. Mamm Res 60:169. https://doi.org/10.1007/s13364-015-0221-5

    Article  Google Scholar 

  • Taberlet P, Bouvet J (1992) Bear conservation genetics. Nature 1:358–197

    Google Scholar 

  • Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V, Escaravage N, Waits LP, Bouvet J (1996) Reliable genoty** of samples with very low DNA quantities using PCR. Nucleic Acids Res 24:3189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taberlet P, Luikart G (1999) Non-invasive genetic sampling and individual identification. Biol J Lin Soc 68(1–2):41–55. https://doi.org/10.1006/bijl.1999.0329

    Article  Google Scholar 

  • Taberlet P, Coissac E, Hajibabaei M, Rieseberg LH (2012) Environmental DNA. Mol Ecol 21:1789–1793. https://doi.org/10.1111/j.1365-294X.2012.05542.x

    Article  CAS  PubMed  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Microchecker: software for identifying and correcting genoty** errors in microsatellite data. Mol Ecol Notes 4:535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x

    Article  CAS  Google Scholar 

  • Wikramanayake E, McKnight M, Dinerstein E, Joshi A, Gurung B, Smith D (2004) Designing a conservation landscape for tigers in human-dominated environments. Conserv Biol 18:839–844

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Chief Conservator of Forest, and field staff of MTR, Amravati, for extending help during sampling.

Funding

This study was supported by Grant BT/PR9323/BCE/8/1056/2013 to Mumtaz Baig by the Department of Biotechnology, Ministry of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mumtaz Baig.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling editor: Pamela Burger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 6171 KB)

Supplementary file 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farah, S., Atkulwar, A., Nahid, R. et al. Recent population expansion in wild gaur (Bos gaurus gaurus) as revealed by microsatellite markers. Mamm Biol 101, 695–707 (2021). https://doi.org/10.1007/s42991-021-00145-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42991-021-00145-y

Keywords

Navigation