Log in

Similarity between soil seed bank and standing vegetation and their relationship with soil and topographical characteristics in a riparian zone

  • Original Article
  • Published:
Community Ecology Aims and scope Submit manuscript

Abstract

Our objectives were to examine the species composition and diversity of soil seed bank (SSB) and standing vegetation (SV), explore association between compositional diversity of SV, SSB and selected environmental factors and assess the implications of SSB on regeneration of flooded riparian vegetation in Hamedan province, Iran. We estimated the ground cover of SV and SSB composition in 90 plots (1 m × 1 m) distributed across 15 sites in the river riparian zone. We evaluated the SSB by seedling emergence method. Canonical correspondence analysis (CCA) was used in a direct gradient analysis of the SV/SSB with the environmental factors. In total, 136 species were identified from germinated seed bank in the greenhouse and there were 131 plant species recorded in the aboveground vegetation. 31 species were observed in the SSB while they were absent in the SV, while there were also 26 species that were only present in the SV. Dominant species in the SSB were floatable seed species, i.e. Cyperus difformis and Dactylis glomerata. In addition, the results indicated a more pronounced effect of environmental factors on SV than on SSB distributions in which a higher number of environmental factors associated significantly with SV than with SSB (6 vs. 4). However, elevation, soil moisture content and total organic matter had significant effects on community distribution of both SSB and SV. The species diversity and composition evenness were significantly higher in the SSB than SV. Although, 105 species were common to SSB and SV, the mean Czekanowski similarity between SV and SSB was very low (15.5%). However, we argue that the recovery of vegetation in degraded sites can still rely on SSB. We concluded that the seed movement among plant communities through hydrochory led to a spatial homogenization of SSB, resulting in a decrease in SSB-SV similarity and an increase in SSB species diversity and compositional evenness. Differences in plant diversity and richness between the SSB and the SV are supposed to be a complementation of diversity between below- and above-ground and therefore, greater community resilience is predicted under stochastic disturbance events such as flooding in the riparian area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarado, J., Marquez, M., & Leon, L. E. (1988). Determination of organic nitrogen by the kjeldahl method using microwave acid digestion. Analytical Letters, 21, 357–365.

    CAS  Google Scholar 

  • Asadian, G. H., Akbarzadeh, M. R., & Sadeghimanesh, M. (2019). The effects of the exclosure on the improvement of the range lands in Hamedan province. Iranian Journal of Range and Desert Research, 16, 343–352.

    Google Scholar 

  • Asaeda, T., Rashid, M., & Sanjaya, H. (2015). Flushing sediment from reservoirs triggers forestation in the downstream reaches. Ecohydrology, 8(3), 426–437.

    Google Scholar 

  • Burrows, C. J. (1990). Processes of vegetation change. Unwin Hyman Ltd.

    Google Scholar 

  • Cambardella, C. A., & Elliott, E. T. (1992). Particulate soil organic matter changes across a grassland cultivation sequence. Soil Science Society of America Journal, 56, 777–783.

    Google Scholar 

  • Cambardella, C. A., Gajda, A. M., Doran, J. W., Wienhold, B. J., & Kettler, T. A. (2001). Estimation of particulate and total organic matter by weight loss-on-ignition. In R. Lal, J. M. Kimble, R. F. Follett, & B. A. Stewart (Eds.), Assessment methods for soil carbon (pp. 349–359). Advances in Soil Science, CRC Press.

    Google Scholar 

  • Capon, S. J., & Brock, M. A. (2006). Flooding, soil seed bank dynamics and vegetation resilience of a hydrologically variable desert floodplain. Freshwater Biology, 51(2), 206–223.

    Google Scholar 

  • Casler, M. D., & Undersander, D. J. (2018). Identification of temperate pasture grasses and legumes. Horse Pasture Management, 2, 11–35.

    Google Scholar 

  • Cho, H. J., **, S. N., Lee, H., Marrs, R. H., & Cho, K. H. (2018). The relationship between the soil seed bank and above-ground vegetation in a sandy floodplain South Korea. Ecology and Resilient Infrastructure, 5(3), 145–155.

    Google Scholar 

  • Dalton, R. L., Carpenter, D. J., Boutin, C., & Allison, J. E. (2017). Factors affecting soil seed banks of riparian communities in an agricultural ecosystem: Potential for conservation of native plant diversity. Applied Vegetation Science, 20, 446–458.

    Google Scholar 

  • de Jager, M., Kaphingst, B., Janse, E. L., Buisman, R., Rinzema, S. G. T., & Soons, M. B. (2018). Seed size regulates plant dispersal distances in flowing water. Journal of Ecology, 107, 307–317.

    Google Scholar 

  • De Leon, I. A., Mariano, N. A., Sorani, V., Flores-Franco, G., Rendon Alquicira, E., & Wehncke, E. V. (2019). Physical environmental conditions determine ubiquitous spatial differentiation of standing plants and seedbanks in neotropical riparian dry forests. PLoS ONE, 14(3), e0212185.

    Google Scholar 

  • de Souza, E. B., Bao, F., Damasceno Junior, G. A., & Pott, A. (2021). Differences between species in seed bank and vegetation helps to hold functional diversity in a floodable neotropical savanna. Journal of Plant Ecology, 14, 605–615.

    Google Scholar 

  • Erfanzadeh, R., Abbasi Kesbi, M., Fattahi, B., & Sher, A. A. (2023). Is the soil seed bank a reliable source for passive restoration of intensive grazed habitats in river riparian areas of western Iran? Ecological Engineering, 192, 106965.

    Google Scholar 

  • Erfanzadeh, R., Shayesteh Palaye, A. A., & Ghelichnia, H. (2020). Shrub effects on germinable soil seed bank in overgrazed grasslands. Plant Ecology and Diversity, 13, 199–208.

    Google Scholar 

  • Garssen, A., Baattrup-Pedersen, A., Voesenek, L., Verhoeven, J., & Soons, M. (2015). Riparian plant community responses to increased flooding: A meta-analysis. Global Change Biology, 21, 2881–2890.

    PubMed  Google Scholar 

  • Georgiou, S., & Turner, R. K. (2012). Valuing ecosystem services: The case of multi-functional Wetlands’. Oxfordshire: Routledge.

    Google Scholar 

  • Ghorbani, J., Nazari, N., Zali, S. H., & Tamartash, R. (2011). Species composition and seed density of soil seed bank in mountain grassland of north Alborz. Journal of Plant Research, 27, 310–319.

    Google Scholar 

  • González, E., Sher, A. A., Anderson, R. M., Bay, R. F., Bean, D. W., Bissonnete, G. J., Bourgeois, B., Cooper, D. J., Dohrenwend, K., Eichhorst, K. D., & El Waer, H. (2017). Vegetation response to invasive Tamarix control in southwestern US rivers: a collaborative study including 416 sites. Ecological Applications, 27(6), 1789–1804.

    PubMed  Google Scholar 

  • Goodson, J. M., Gurnell, P. A. M., Angold, G., & Morrissey, I. P. (2003). Evidence for hydrochory and the deposition of viable seeds within winter flow-deposited sediments: The river dove, Derbyshire, UK. River Research and Applications, 19, 317–334.

    Google Scholar 

  • Gothe, E., Wiberg-Larsen, P., Kristensen, E. A., Baattrup-Pedersen, A., Sandin, L., & Friberg, N. (2015). Impacts of habitat degradation and stream spatial location on biodiversity in a disturbed riverine landscape. Biodiversity Conservation, 24, 1423–1441.

    Google Scholar 

  • Gray, A. J., & Bunce, R. G. H. (1972). The ecology of Morecambe Bay. VI. Soils and vegetation of the salt marshes: A multivariate approach. Journal of Applied Ecology, 9, 221–234.

    Google Scholar 

  • Hampe, A. (2004). Extensive hydrochory uncouples spatiotemporal patterns of seed fall and seedling recruitment in a ‘bird-dispersed’ riparian tree. Journal of Ecology, 92, 797–807.

    Google Scholar 

  • Hanlon, T. J., Williams, C. E., & Moriarity, W. J. (1998). Species composition of soil seed banks of Allegheny Plateau riparian forests. Journal of the Torrey Botanical Society, 125, 199–215.

    Google Scholar 

  • Jabbari, I., Ghobadian, R., & Jadid, A. (2023). The effect of April 2019 flash flood on the morphology of the meandering confluence of the Dinver river to Gamasiab using SRH-2D numeric model. Geography and Development, 21(70), 1–26.

    Google Scholar 

  • Kent, M., & Coker, P. (1994). Vegetation description and analysis. A practical approach. Chichester: Wiley.

    Google Scholar 

  • Latombe, G., Hui, C., & McGeoch, M. A. (2015). Beyond the continuum: A multi-dimensional phase space for neutral–niche community assembly. Proceedings of the Royal Society B: Biological Sciences, 282, 20152417.

    PubMed Central  Google Scholar 

  • Latombe, G., Richardson, D. M., McGeoch, M. A., Altwegg, R., Catford, J. A., Chase, J. M., Courchamp, F., Esler, K. J., Jeschke, J. M., Landi, P., Measey, J., Midgley, G. F., Minoarivelo, H. O., Rodger, J. G., & Hui, C. (2021). Mechanistic reconciliation of community and invasion ecology. Ecosphere, 12(2), e03359. https://doi.org/10.1002/ecs2.3359

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, H., Alday, J. G., Cho, K. H., Lee, E. J., & Marrs, R. H. (2014). Effects of flooding on the seed bank and soil properties in a conservation area on the Han River, South Korea. Ecological Engineering, 70, 102–113.

    Google Scholar 

  • Leps, J., & Smilauer, P. (2003). Multivariate analysis of ecological data using CANOCO. Cambridge University Press.

    Google Scholar 

  • Mmusi, M., Tsheboeng, G., Teketay, T., Murray-Hudson, M., Kashe, K., & Madome, J. (2021). Species richness, diversity, density and spatial distribution of soil seed banks in the riparian woodland along the Thamalakane River of the Okavango Delta, northern Botswana. Trees, Forests and People, 6, 100160.

    Google Scholar 

  • Moody, K., Munroe, C.E., Lubigan, R.T., Paller, Jr. EC. (1984). Major weeds of the Philippines. Weed science society of the Philippines. College Laguna (Philippines): University of the Philippines at Los Baños 328 p.

  • Nilsson, C., Brown, R. L., & Jansson, R. (2010). The role of hydrochory in structuring riparian and wetland vegetation. Biological Review of the Cambridge Philosophical Society, 85, 837–858.

    Google Scholar 

  • Odum, E. P. (1971). Fundamentals of ecology (3rd ed.). Saunders.

    Google Scholar 

  • Osca, J. M., Galán, F., & Moreno-Ramón, H. (2021). Rice paddy soil seedbanks composition in a Mediterranean wetland and the influence of winter flooding. Agronomy, 11, 1199.

    Google Scholar 

  • Peterson, E. E., Sheldon, F., Darnell, R., Bunn, S. E., & Harch, B. D. (2011). A comparison of spatially explicit landscape representation methods and their relationship to stream condition. Freshwater Biology, 56(3), 590–610.

    Google Scholar 

  • Pétillon, J., Erfanzadeh, R., Garbutt, A., Maelfait, J. P., & Hoffmann, M. (2010). Inundation frequency determines the post-pioneer successional pathway in a newly created salt marsh. Wetlands, 30, 1097–1105.

    Google Scholar 

  • Prihar, S. S., & Hundal, S. S. (1971). Determination of bulk density of soil clod by saturation. Geoderma, 5, 283–286.

    Google Scholar 

  • Rasran, L., Vogt, K., & Jensen, K. (2021). Hydrochorous seed transport in a small river in Northern Germany as trait-dependent filter of plant dispersal and recruitment. Hydrobiology, 106, 277–286.

    Google Scholar 

  • Rechinger, K. H. (1964). Flora Iranica: Akademische Druck-und Verlagsanstalt Graz (p. 549). University of Tehran.

    Google Scholar 

  • Rezaei Moghaddam, M. H., Jabbari, I., & Pirozynezhad, N. (2016). A Study of Meandering, Braided and Ana Branching channel plan forms, using sinuosity and braided indexes in Gamasiab River. Journal of Watershed Management Research, 7, 272–283.

    Google Scholar 

  • Sahrawat, K. L. (1982). Simple modification of the Walkley-Black method for simultaneous determination of organic carbon and potentially mineralizable nitrogen in tropical rice soils. Plant and Soil, 69, 73–77.

    CAS  Google Scholar 

  • Silvestri, S., & Marani, M. (2004). Salt-marsh vegetation and morphology: Basic physiology, modelling and remote sensing observations. The Ecogeomorphology of Tidal Marshes, Coastal Estuarine Studies, 59, 5–25.

    Google Scholar 

  • Smart, S. M., Thompson, K., Marrs, R. H., Le Duc, M. G., Maskell, L. C., & Firbank, L. G. (2006). Biodiversity loss and biotic homogenization across human-modified ecosystems. Proceeding of the Royal Society B, 273, 2659–2665.

    Google Scholar 

  • Soleimaninejad, Z., Ghavam, M., Tavili, A., & Toluei, Z. (2021). Investigating the soil seed bank and its relation with the aboveground vegetation along an elevation gradient in Kashan Iran. Journal of Rangeland Sciences, 11(3), 336–356.

    Google Scholar 

  • Thompson, K. (2000). Seeds: The ecology of regeneration in plant communities (2nd ed.). Wallingford: CABI Publishing.

    Google Scholar 

  • Thompson, K., Bakker, J. P., & Bekker, R. M. (1997). The soil seed banks of North West Europe: Methodology, density and longevity. Cambridge University Press.

    Google Scholar 

  • Tilman, D. (2004). Niche tradeoffs, neutrality, and community structure: A stochastic theory of resource competition, invasion, and community assembly. Proceedings of the National Academy of Sciences of the United States of America, 101, 10854–10861.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah, H., Mulk Khan, S., Jaremko, M., Jahangir, S., Ullah, Z., Ali, L., Ahmad, Z., & Badshah, H. (2022). Vegetation assessments under the influence of environmental variables from the Yakhtangay hill of the Hindu-Himalayan range North Western Pakistan. Scientific Reports, 12, 20973.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vince, S. W., & Snow, A. A. (1984). Plant zonation in an Alaskan salt marsh. I. Distribution, abundance and environmental factors. Journal of Ecology, 72, 651–667.

    Google Scholar 

  • Vogt, K., Rasran, L., & Jensen, K. (2004). Water-borne seed transport and seed deposition during flooding in a small river-valley in Northern Germany. Flora, 199, 377–388.

    Google Scholar 

  • Willems, J. H., & Bik, L. P. M. (1998). Restoration of high species density in calcareous grassland: The role of seed rain and soil seed bank. Applied Vegetation Sciences, 1, 91–100.

    Google Scholar 

  • Wisheu, I. C., & Keddy, P. A. (1992). Competition and centrifugal organization of plant communities: Theory and tests. Journal of Vegetation Science, 3, 147–156.

    Google Scholar 

  • Zarezadeh Mehrizi, Sh., Bazrafshan, J., & Bazrafshan, O. (2019). Flow regime changes of Gamasiab river under climate change scenarios. Journal of Environmental Studies, 44, 587–602.

    Google Scholar 

  • Zou, C., Martini, F., **a, S. W., Castillo-Diaz, D., & Goodale, U. M. (2021). Elevation and micro environmental conditions directly and indirectly influence forests’ soil seed bank communities. Global Ecology and Conservation, 26, e01443.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Erfanzadeh.

Appendix 1

Appendix 1

Average percentage cover of species in the standing vegetation and soil seed bank density per m2 together with family names, life spans and life forms information. P: perennial, A: annual, B: biennial, T: tree, F: forb, G: grass, S: shrub

Species names

Family

Life span

Life form

Soil seed bank

Standing vegetation

Acer negundo

Sapindaceae

P

T

2.83

0.02

Achillea aleppica

Asteraceae

P

F

0.00

0.04

Adiantum capillus

Adiantaceae

P

F

1.70

0.09

Aegilops tauschii

Gramineae

A

G

14.72

0.20

Aegilops trioncialis

Gramineae

A

G

8.49

0.51

Agropyron trichophorum

Gramineae

P

G

9.63

2.88

Alhagi camelorum

Fabaceae

P

S

0.00

1.34

Allium ampeloprasum

Amaryllidaceae

A

F

11.32

0.04

Alopecurus mucronatus

Gramineae

P

S

2.26

0.07

Alopecurus myosuroides

Gramineae

A

S

52.66

1.28

Alysum desertorum

Crucifereae

A

F

2.83

0.13

Amaranthus blitoides

Amaranthaceae

A

F

9.06

0.05

Amaranthus viridis

Amaranthaceae

A

F

24.91

0.00

Anchusa italica

Boraginaceae

A

F

2.26

0.07

Anthemis repens

Asteraceae

P

F

0.00

0.01

Asperula arvensis

Rubiaceae

A

F

1.70

0.00

Astragalus trachyacanthus

Fabaceae

P

S

0.00

0.13

Astragalus gossypinus

Fabaceae

P

S

2.26

1.50

Avena fatua

Gramineae

A

G

5.66

0.58

Boissiera squarrosa

Gramineae

A

G

23.78

0.22

Bothriochloa ischaemum

Gramineae

P

G

0.00

0.08

Brachypodium sylvaticum

Gramineae

P

G

5.66

0.00

Brassica napus

Cruciferae

A

F

10.19

0.01

Bromus danthonia

Gramineae

A

G

27.74

0.65

Bromus sterilis

Gramineae

B

F

14.16

0.02

Bromus tectorum

Gramineae

A

G

54.36

2.79

Bromus tomentosus

Gramineae

P

G

27.18

1.04

Bunium persicum

Umbellifereae

P

F

6.23

0.31

Capsella bursa-pastoris

Cruciferae

A

F

2.83

0.04

Cardaria draba

Cruciferae-

P

F

0.00

0.05

Carthamus oxyacantha

Asteraceae

P

F

7.93

0.06

Catabrosa aquatica

Gramineae

P

F

1.70

0.00

Centaurea behen

Asteraceae

A

F

0.00

0.04

Centaurea persica

Asteraceae

P

F

4.53

1.57

Centaurea solstitialis

Asteraceae

A

F

0.57

0.02

Cerastium dichotomum

Caryophylaceae

P

F

0.00

0.02

Chaerophyllum macropodum

Apiaceae

P

F

9.06

0.47

Chenopodium album

Chenopodiaceae

A

F

7.36

0.05

Chenopodium murale

Chenopodiaceae

A

F

6.79

0.09

Cichorium intybus

Asteraceae

A

F

22.08

1.61

Cirsium arvense

Asteraceae

P

F

7.93

0.61

Convolus arvensis

Convolvulaceae

P

F

2.26

0.46

Coronilla varia

Fabaceae

P

F

0.00

0.01

Cousinia cylindracea

Asteraceae

A

F

0.57

0.15

Crataegus pointica

Rosaceae

P

S

0.57

0.02

Crataegus pseudoheterophylla

Rosaceae

P

S

1.70

0.15

Crozophora tinctoria

Euphorbiaceae

A

F

1.70

0.01

Cynodon dactylon

Gramineae

P

G

53.79

8.42

Cyperus difformis

Cyperaceae

A

F

167.36

2.06

Cyperus fuscus

Cyperaceae

A

F

58.89

0.01

Dactylis glomerata

Gramineae

P

G

65.12

3.73

Daphne macrantha

Thymelaeaceae

P

S

1.70

0.01

Datura stramonium

Solanaceae

A

F

1.70

0.00

Digitaria ciliaris

Gramineae

A

G

8.49

0.02

Diplotaxis muralis

Cruciferae

P or A

F

3.40

0.00

Ducrosia anethifolia

Apiaceae

P

F

0.00

0.12

Echinops ecbatanus

Asteraceae

P

F

2.26

0.84

Echinops orientalis

Asteraceae

P

F

1.70

0.33

Equisetum ramosissimum

Equisetaceae

A

F

0.57

0.30

Equisetum arvense

Equisetaceae

P

F

13.59

0.16

Eryngium billardieri

Apiaceae

P

F

0.57

0.04

Eryngium canadensis

Apiaceae

P

F

2.83

0.00

Eryngium thyrsoideum

Apiaceae

P

F

0.57

0.01

Eryngium variifolium

Apiaceae

A

F

0.00

0.09

Euphorbia aucheri

Euphorbiaceae

A

F

1.13

0.01

Euphorbia boissieriana

Euphorbiaceae

P

F

2.83

0.11

Euphorbia cheiradenia

Euphorbiaceae

P

F

7.93

0.17

Falcaria vulgaris

Apiaceae

B

F

0.57

0.69

Ferula microcolea

Apiaceae

P

F

0.57

0.44

Festuca arundinaceae

Gramineae

P

G

8.49

0.88

Festuca ovina

Gramineae

P

G

10.76

0.73

Galium aparine

Rubiaceae

P

F

37.94

1.09

Galium verum

Rubiaceae

P

F

1.70

2.28

Glycyrrhiza glabra

Fabaceae

P

F

0.00

0.26

Gundelia tornifortii

Asteraceae

P

F

0.00

0.47

Gypsophila elegans

Caryophylaceae

P

S

0.00

0.67

Helianthemum salicifolium

Cistaceae

B

F

9.06

0.47

Henrardia persica

Gramineae

A

G

1.13

0.33

Heptaptera anisoptera

Apiaceae

P

F

0.57

0.18

Hordeum bulbosum

Gramineae

P

G

18.69

2.11

Hordeum marinum

Gramineae

A

G

0.57

1.52

Hypericum perforatum

Hypericaceae

P

F

0.57

0.01

Inula britannica

Asteraceae

B

F

7.36

0.00

Isatis cappadocica

Cruciferae

A

F

10.76

0.17

Ixiolirion tataricum

Amaryllidaceae

P

F

21.52

0.00

Juncus inflexus

Juncaceae

P

G

54.92

1.73

Lactuca hirsuta

Asteraceae

B

F

33.97

0.00

Lactuca orientalis

Asteraceae

P

F

1.13

0.21

Lactuca serriola

Asteraceae

B

F

6.79

0.28

Lamium amplexicaule

Labiatae

P

F

2.83

0.00

Leontodon taraxacoides

Asteraceae

P

F

3.96

0.00

Lepidium draba

Cruciferae

P

F

0.57

0.00

Leucopoa sclerophylla

Gramineae

P

G

6.23

0.00

Libanotis transcaucasica

Umbelliferae

P

F

3.96

0.00

Lolium rigidum

Gramineae

A

G

33.97

1.61

Lotus gebelia

Fabaceae

P

F

44.17

1.14

Malva sylvestris

Malvaceae

A

F

0.00

0.06

Marrubium astracanicum

Labiatae

P

F

0.00

0.08

Medicago orbicularis

Fabaceae

P

F

13.02

0.03

Medicago sativa

Fabaceae

P

F

10.19

0.12

Melilotus officinalis

Fabaceae

P

F

3.40

0.19

Mentha aquatica

Labiatae

P

F

66.25

0.02

Mentha longifolia

Labiatae

P

F

29.44

0.06

Mentha pulegium

Labiatae

P

F

17.55

0.19

Morus alba

Moraceae

P

T

1.70

0.00

Nasturtium officinale

Cruciferae

P

F

13.59

0.00

Noaea mucronata

Chenopodiaceae

P

S

2.26

0.08

Ocimum basilicum

Labiatae

A

F

1.70

0.59

Phalaris paradoxa

Gramineae

A

G

11.32

0.16

Phleum exaratum

Gramineae

A

G

12.46

0.34

Phlomis Kurdica

Labiatae

P

S

3.96

0.18

Phlomis olivieri

Labiatae

P

F

0.00

0.34

Phragmetis australis

Gramineae

P

G

20.38

1.56

Plantago lanceolata

Plantaginaceae

P

S

7.36

0.00

Plantago major

Plantaginaceae

P

S

23.22

0.12

Poa bulbosa

Gramineae

P

G

7.44

3.99

Poa pratensis

Gramineae

P

G

8.49

0.94

Poa trivialis

Gramineae

P

G

2.83

0.37

Polygonum alpestre

Polygonaceae

P

F

1.70

0.00

Polygonum patulum

Polygonaceae

A

F

0.00

0.06

Polygonum thymifolium

Polygonaceae

A

F

1.70

0.02

Populus nigra

Salicaceae

P

T

2.26

0.00

Portulaca oleracea

Caryophylaceae

A

F

10.19

0.00

Potentilla reptans

Rosaceae

P

F

14.16

1.26

Prunus armeniaca

Rosaceae

P

T

3.96

0.00

Prunus avium

Rosaceae

P

T

1.70

0.00

Prunus divaricacta

Rosaceae

P

T

0.57

0.08

Quercus brantii

Fagaceae

P

T

0.57

0.51

Rheum ribes

Polygonaceae

P

F

0.00

0.02

Rubus sanctus

Rosaceae

P

S

1.70

0.84

Salix alba

Salicaceae

P

T

0.00

0.06

Salvia acetabolosa

Labiatae

P

S

1.13

0.11

Salvia syriaca

Labiatae

A

F

0.00

0.20

Sanguisorba minor

Rosaceae

A

F

16.99

0.79

Scabiosa rotate

Dipsacoideae

A

F

0.00

0.02

Scariola orientalis

Asteraceae

P

F

3.96

0.01

Scorzonera pseudolanata

Asteraceae

A

F

9.63

0.01

Scrophularia variegata

Scrophulariaceae

P

F

0.00

0.01

Senecio vernalis

Asteraceae

A

F

0.00

0.03

Silene swertifolia

Caryophylaceae

A

F

1.70

0.01

Solanum nigrum

Solanaceae

A

F

1.70

0.00

Sonchus oleraceus

Asteraceae

A

F

1.70

0.00

Stachys inflata

Labiatae

P

F

0.00

0.07

Stipa barbata

Gramineae

P

G

0.00

0.43

Symphytum tuberosum

Boraginaceae

P

F

1.13

0.00

Taeniatherum crinitum

Gramineae

A

G

13.02

2.26

Tamarix sp.

Tamaricaceae

P

S

5.66

0.00

Taraxicum officinale

Asteraceae

P

F

2.83

0.18

Tragopogon longirostris

Asteraceae

P

F

0.57

0.06

Trifolium campestre

Fabaceae

A

F

5.66

0.00

Trifolium repens

Fabaceae

P

F

8.49

0.32

Tulipa montana

Liliaceae

A

F

9.63

0.00

Typha persica

Gramineae

P

G

1.13

0.12

Ulmus minor

Ulmaceae

P

T

2.26

0.10

Valiantia hispida

Rubiaceae

A

F

15.29

0.01

Verbena officinalis

Verbenaceaea

P

F

1.13

0.00

Veronica persica

Scrophulariaceae

A

F

8.49

0.00

Vicia variabilis

Fabaceae

A

F

13.02

0.05

Viola canina

Violaceae

A

F

4.53

0.04

Vitis sp.

Vitaceae

P

S

1.13

0.10

Xanthium strumarium

Asteraceae

A

F

1.13

0.00

Zizphora tenuior

Labiatae

A

F

0.57

0.01

Zoegea leptaurea

Asteraceae

P

F

3.96

0.81

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kesbi, M.A., Erfanzadeh, R. & Fattahi, B. Similarity between soil seed bank and standing vegetation and their relationship with soil and topographical characteristics in a riparian zone. COMMUNITY ECOLOGY 25, 89–101 (2024). https://doi.org/10.1007/s42974-023-00180-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42974-023-00180-4

Keywords

Navigation