Log in

An Efficient Second-Order Convergent Scheme for One-Side Space Fractional Diffusion Equations with Variable Coefficients

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

In this paper, a second-order finite-difference scheme is investigated for time-dependent space fractional diffusion equations with variable coefficients. In the presented scheme, the Crank–Nicolson temporal discretization and a second-order weighted-and-shifted Grünwald–Letnikov spatial discretization are employed. Theoretically, the unconditional stability and the second-order convergence in time and space of the proposed scheme are established under some conditions on the variable coefficients. Moreover, a Toeplitz preconditioner is proposed for linear systems arising from the proposed scheme. The condition number of the preconditioned matrix is proven to be bounded by a constant independent of the discretization step-sizes, so that the Krylov subspace solver for the preconditioned linear systems converges linearly. Numerical results are reported to show the convergence rate and the efficiency of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abirami, A., Prakash, P., Thangavel, K.: Fractional diffusion equation-based image denoising model using CN-GL scheme. Int. J. Comput. Math. 95(6/7), 1222–1239 (2018)

    MathSciNet  Google Scholar 

  2. Chen, M.H., Deng, W.H.: Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. 52, 1418–1438 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Chen, Y., Vinagre, B.M.: A new IIR-type digital fractional order differentiator. Signal Process. 83(11), 2359–2365 (2003)

    MATH  Google Scholar 

  4. Ciarlet, P.G.: Linear and Nonlinear Functional Analysis with Applications, vol. 130. SIAM, Philadelphia (2013)

    MATH  Google Scholar 

  5. Ding, H., Li, C.: A high-order algorithm for time-Caputo-tempered partial differential equation with Riesz derivatives in two spatial dimensions. J. Sci. Comput. 80(1), 81–109 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262–279 (2016)

    MathSciNet  MATH  Google Scholar 

  7. De Hoog, F.: A new algorithm for solving Toeplitz systems of equations. Linear Algebra Appl. 88, 123–138 (1987)

    MathSciNet  MATH  Google Scholar 

  8. Gohberg, I., Olshevsky, V.: Circulants, displacements and decompositions of matrices. Integr. Equ. Oper. Theory 15, 730–743 (1992)

    MathSciNet  MATH  Google Scholar 

  9. Hao, Z.P., Sun, Z.Z., Cao, W.R.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787–805 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Ilic, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation (II)-with nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal. 9(4), 333–349 (2006)

    MathSciNet  MATH  Google Scholar 

  11. **, X.Q., Vong, S.W.: An Introduction to Applied Matrix Analysis. Higher Education Press, Bei**g (2016)

    MATH  Google Scholar 

  12. Koeller, R.: Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51(2), 299–307 (1984)

    MathSciNet  MATH  Google Scholar 

  13. Laub, A.J.: Matrix Analysis for Scientists and Engineers, vol. 91. SIAM, Philadelphia (2005)

    MATH  Google Scholar 

  14. Lei, S.L., Chen, X., Zhang, X.H.: Multilevel circulant preconditioner for high-dimensional fractional diffusion equations. East Asian J. Appl. Math. 6, 109–130 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Lei, S.L., Huang, Y.C.: Fast algorithms for high-order numerical methods for space-fractional diffusion equations. Int. J. Comput. Math. 94(5), 1062–1078 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Lei, S.L., Sun, H.W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Li, C., Deng, W., Zhao, L.: Well-posedness and numerical algorithm for the tempered fractional differential equations. Discrete Contin. Dyn. Syst. 24(4), 1989–2015 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Li, M., Gu, X.M., Huang, C., Fei, M., Zhang, G.: A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. J. Comput. Phys. 358, 256–282 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Lin, X.L., Ng, M.K.: A fast solver for multidimensional time–space fractional diffusion equation with variable coefficients. Comput. Math. Appl. 78(5), 1477–1489 (2019)

    MathSciNet  Google Scholar 

  20. Lin, X.L., Ng, M.K., Sun, H.W.: Efficient preconditioner of one-sided space fractional diffusion equation. BIT 58, 729–748 (2018). https://doi.org/10.1007/s10543-018-0699-8

    Article  MathSciNet  MATH  Google Scholar 

  21. Lin, X.L., Ng, M.K., Sun, H.W.: Stability and convergence analysis of finite difference schemes for time-dependent space-fractional diffusion equations with variable diffusion coefficients. J. Sci. Comput. 75, 1102–1127 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Lin, X.L., Ng, M.K., Sun, H.W.: Crank–Nicolson alternative direction implicit method for space-fractional diffusion equations with nonseparable coefficients. SIAM J. Numer. Anal. 57(3), 997–1019 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Meerschaert, M.M., Scheffler, H.P., Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211, 249–261 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Moghaddam, B., Machado, J.T., Morgado, M.: Numerical approach for a class of distributed order time fractional partial differential equations. Appl. Numer. Math. 136, 152–162 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Moghaderi, H., Dehghan, M., Donatelli, M., Mazza, M.: Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations. J. Comput. Phys. 350, 992–1011 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Ng, M.K.: Iterative Methods for Toeplitz Systems. Oxford University Press, USA (2004)

    MATH  Google Scholar 

  28. Osman, S., Langlands, T.: An implicit Keller Box numerical scheme for the solution of fractional sub-diffusion equations. Appl. Math. Comput. 348, 609–626 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  30. Pu, Y.F., Siarry, P., Zhou, J.L., Zhang, N.: A fractional partial differential equation based multiscale denoising model for texture image. Math. Methods Appl. Sci. 37(12), 1784–1806 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Pu, Y.F., Zhou, J.L., Yuan, X.: Fractional differential mask: a fractional differential-based approach for multiscale texture enhancement. IEEE Trans. Image Process. 19(2), 491–511 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Pu, Y.F., Zhou, J.L., Zhang, Y., Zhang, N., Huang, G., Siarry, P.: Fractional extreme value adaptive training method: fractional steepest descent approach. IEEE Trans. Neural Networks Learn. Syst. 26(4), 653–662 (2013)

    MathSciNet  Google Scholar 

  33. Qu, W., Lei, S.L., Vong, S.: A note on the stability of a second order finite difference scheme for space fractional diffusion equations. Numer. Algebra Control Optim. 4, 317–325 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Rossikhin, Y.A., Shitikova, M.V.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50(1), 15–67 (1997)

    Google Scholar 

  35. Roy, S.: On the realization of a constant-argument immittance or fractional operator. IEEE Trans. Circ. Theory 14(3), 264–274 (1967)

    MathSciNet  Google Scholar 

  36. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Switzerland (1993)

    MATH  Google Scholar 

  37. Sousa, E.: Numerical approximations for fractional diffusion equations via splines. Comput. Math. Appl. 62(3), 938–944 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Sousa, E., Li, C.: A weighted finite difference method for the fractional diffusion equation based on the Riemann–Liouville derivative. Appl. Numer. Math. 90, 22–37 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220, 813–823 (2007)

    MathSciNet  MATH  Google Scholar 

  40. Tadjeran, C., Meerschaert, M.M., Scheffler, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)

    MathSciNet  MATH  Google Scholar 

  41. Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comp. 84, 1703–1727 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Tseng, C.C.: Design of fractional order digital FIR differentiators. IEEE Signal Process Lett. 8(3), 77–79 (2001)

    Google Scholar 

  43. Vong, S., Lyu, P.: On a second order scheme for space fractional diffusion equations with variable coefficients. Appl. Numer. Math. 137, 34–48 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Vong, S., Lyu, P., Chen, X., Lei, S.L.: High order finite difference method for time–space fractional differential equations with Caputo and Riemann–Liouville derivatives. Numer. Algorithms 72, 195–210 (2016)

    MathSciNet  MATH  Google Scholar 

  45. Yuttanan, B., Razzaghi, M.: Legendre wavelets approach for numerical solutions of distributed order fractional differential equations. Appl. Math. Modell. 70, 350–364 (2019)

    MathSciNet  Google Scholar 

  46. Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.: A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction–diffusion equation. SIAM J. Numer. Anal. 52, 2599–2622 (2014)

    MathSciNet  MATH  Google Scholar 

  47. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection–diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47(3), 1760–1781 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and referees for valuable comments and suggestions, which helped to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pin Lyu.

Additional information

This research was supported by research Grants, 12306616, 12200317, 12300519, 12300218 from HKRGC GRF, 11801479 from NSFC, MYRG2018-00015-FST from University of Macau, and 0118/2018/A3 from FDCT of Macao, Macao Science and Technology Development Fund 0005/2019/A, 050/2017/A, and the Grant MYRG2017-00098-FST and MYRG2018-00047-FST from University of Macau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Xl., Lyu, P., Ng, M.K. et al. An Efficient Second-Order Convergent Scheme for One-Side Space Fractional Diffusion Equations with Variable Coefficients. Commun. Appl. Math. Comput. 2, 215–239 (2020). https://doi.org/10.1007/s42967-019-00050-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-019-00050-9

Keywords

Mathematics Subject Classification

Navigation