Log in

Mechanical Properties Optimization of Soil—Cement Kiln Dust Mixture Using Extreme Vertex Design

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

This article has been updated

Abstract

As a result of environmental issues, the use waste residue has gained much attention in the field of soil re-engineering, this is because of the feasibility of using waste derivatives in soil amelioration protocols. This necessitated the current study to deal with the utilization of an industrial residue termed as cement kiln dust (CKD) in enhancing the mechanical performance of black expansive clayey material. The amelioration protocols were as a result of the poor engineering performance of black cotton soil thereby becoming a road cancer material. The extreme vertex design (EVD) is a flexible approach and was adopted for the mixture experimental design and modelling of the mechanical properties of problematic black cotton soil—cement kiln dust blend. The statistical analyses and or approaches engaged in course of this study were carried out using Minitab 18 and Design Expert statistical software. In the current study, the responses considered include California bearing ratio (soaked and unsoaked) and unconfined compressive strength test. The corresponding experimental responses were then achieved in the laboratory and used for analysis and model development. Statistical diagnostics and influence tests carried out on the developed model showed a good correlation with the actual results. However, using the EVD design of experiment approach, the peak performance of soil-CKD was achieved at the mixture combination of 0.45, 0.443 and 0.107% for soil, CKD and water, respectively. The strength outcomes indicate that cement kiln dust could be useful in ameliorating expansive soil for sub-base material of low trafficked roads and as well reduce cost of cement kiln dust residue disposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23.

Similar content being viewed by others

Change history

  • 13 June 2021

    Due to an unfortunate mistake during the correction process the author portraits have been interchanged.

References

  1. Mamatha, K. M., & Dinesh, S. V. (2017). Resilient modulus of black cotton soil. International Journal of Pavement Research, 10(2), 171–184. https://doi.org/10.1016/j.ijprt.2017.01.008

    Article  Google Scholar 

  2. Sudharani, K., Abhishek, S. K., Adarsh, N., Harish, T., & Manjunath. (2017). Stabilization of black cotton soil using brick dust and bagasse ash. International Journal for Scientific Research and Development, 5(5), 140–144.

  3. Gidigasu, S. S. R., & Gawu, S. K. Y. (2013). The mode of formation, nature and geotechnical characteristics of black cotton soils—a review. Standard Scientific Research and Essays, 1(14), 377–390

    Google Scholar 

  4. Etim, R. K., Eberemu, A. O., & Osinubi, K. J. (2017). Stabilization of black cotton soil with lime and iron ore tailings admixture. Journal of Transportation Geotechnic, 10, 85–95. https://doi.org/10.1016/j.trgeo.2017.01.002

    Article  Google Scholar 

  5. Moses, G., Etim, R. K., Sani, J. E., & Nwude, M. (2019). Desiccation-induced volumetric shrinkage characteristics of highly expansive tropical black clay treated with groundnut shell ash for barrier consideration. Civil and Environmental Research, 11(8), 58–74. https://doi.org/10.7176/CER/11-8-06

    Article  Google Scholar 

  6. Etim, R. K., Attah, I. C., Eberemu, A. O., & Yohanna, P. (2019). Compaction behaviour of periwinkle shell ash treated lateritic soil for use as road sub-base construction material. Journal of GeoEngineering, 14(3), 179–190. https://doi.org/10.6310/jog.201909_14(3).7

    Article  Google Scholar 

  7. Attah, I. C., Agunwamba, J. C., Etim, R. K., & Ogarekpe, N. M. (2019). Modelling and predicting of CBR values of lateritic soil treated with metakaolin for road material. ARPN Journal of Engineering and Applied Sciences, 14(20), 3606–3618

    Google Scholar 

  8. Etim, R. K., Attah, I. C., & Yohanna, P. (2020). Experimental study on potential of oyster shell ash in structural strength improvement of lateritic soil for road construction. International Journal of Pavement Research Technology, Chinese Society of Pavement Engineering, 13(4), 341–351. https://doi.org/10.1007/s42947-020-0290-y

    Article  Google Scholar 

  9. Attah, I. C., Okafor, F. O., & Ugwu, O. O. (2021). Optimization of California bearing ratio of tropical black clay soil treated with cement kiln dust and metakaolin blend. International Journal of Pavement Research and Technology, 14(6), 655–667. https://doi.org/10.1007/s42947-020-0003-6

    Article  Google Scholar 

  10. Attah, I. C., Etim, R. K., Yohanna, P., & Usanga, I. N. (2021). Understanding the effect of compaction energies on the strength indices and durability of oyster shell ash-lateritic soil mixtures for use in road works. Engineering and Applied Science Research, 48(2), 151–160

    Google Scholar 

  11. Etim, R. K., Attah, I. C., Ogarekpe, N. M., & Robert, E. E. (2018). Geotechnical behaviour of lateritic soil—oyster shell ash mixtures. Proceedings of 16th International Conference and Annual General Meeting 2018 of Nigerian Institution of Civil Engineers. Theme: Transforming National Economy through Sustainable Civil Engineering Infrastructure, Paradise 2018. Calabar Intl. Convention Centre, Cal., Cross River State. 24–26 October, 2018, pp. 45–52

  12. Etim, R. K., Attah, I. C., Yohanna, P., & Eshiet, S. J. (2018). Geotechnical properties of lateritic soil treated with periwinkle shell ash. Proceedings of 16th International Conference and Annual General Meeting 2018 of Nigerian Institution of Civil Engineers. Theme: Transforming National Economy through Sustainable Civil Engineering Infrastructure, Paradise 2018. Calabar Intl. Convention Centre, Cal., Cross River State. 24–26 October, 2018, pp. 148–156

  13. Attah, I. C., Okafor, F. O., Ugwu, O. O. (2021). Experimental and optimization study of unconfined compressive strength of ameliorated tropical black clay. Engineering and Applied Science Research. 48(3), 238–248. https://doi.org/10.14456/easr.2021.26

  14. Attah, I. C., Etim, R. K., & Usanga, I. N. (2021). Potentials of cement kiln dust and rice husk ash blend on strength of tropical soil for sustainable road construction material. IOP Conference Series: Materials Science and Engineering, 1036, 012072. https://doi.org/10.1088/1757-899X/1036/1/012072

    Article  Google Scholar 

  15. Ekpo, D. U., Fajobi, A. B., Ayodele, A. L., & Etim, R. K. (2021). Potentials of cement kiln dust-periwinkle shell ash blends on plasticity properties of two selected tropical soils for use as sustainable construction materials. IOP Conference Series: Material Science and Engineering, 1036, 012033. https://doi.org/10.1088/1757-899X/1036/1/012033

    Article  Google Scholar 

  16. Miller, G. A., & Zaman, M. (2000). Field and laboratory evaluation of cement kiln dust as a soil stabilizer. Transportation Research Record, 1714, 25–32

    Article  Google Scholar 

  17. Salahudeen, A. B., Eberemu, O. A., & Osinubi, K. J. (2014). Assessment of cement kiln dust-treated expansive soil for the construction of flexible pavements. Geotechnical and Geological Engineering, Springer, 32(4), 923–931

    Article  Google Scholar 

  18. Maslehuddin, M., Al-Amoudi, O. S. B., Shameema, M., Rehmana, M. K., & Ibrahim, M. (2008). Usage of cement kiln dust in cement products—Research review and preliminary investigations. Construction and Building Materials, 22, 2369–2375

    Article  Google Scholar 

  19. Shoaib, M. M., Balaha, M. M., & Abdel-Rahman, A. G. (2000). Influence of cement kiln dust substitution on the mechanical properties of concrete. Cement and Concrete Research, 30, 337–371

    Article  Google Scholar 

  20. Sreekrishnavilasam, A., King, S., & Santagata, M. (2006). Characterization of fresh and landfilled cement kiln dust for reuse in construction applications. Engineering Geology, 85, 165–173

    Article  Google Scholar 

  21. Salahudeen, A. B., Ijimdiya, T. S., Eberemu, A. O., & Osinubi, K. J. (2018). Artificial neural networks prediction of compaction characteristics of black cotton soil stabilized with cement kiln dust. Journal of Soft Computing in Civil Engineering, 2(3), 53–74

    Google Scholar 

  22. PCA: The Portland Cement Association. (1992). An analysis of selected trace metals in cement kiln dust. PCA.

  23. El-Attar, M. M., Sadek, D. M., & Salah, A. M. (2017). Recycling of high volumes of cement kiln dust in bricks industry. Journal of Cleaner Production, 143, 506–515

    Article  Google Scholar 

  24. Chaunsali, P., & Peethamparan, S. (2013). Influence of the composition of cement kiln dust on its interaction with fly ash and slag. Cement and Concrete Research, 54, 106–113. https://doi.org/10.1016/j.cemconres.2013.09.001

    Article  Google Scholar 

  25. Alaneme, G. U., Onyelowe, K. C., Onyia, M. E., Van Bui, D., Mbadike, E. M., Dimonyeka, M. U., Attah, I. C., Ogbonna, C., Iro, U. I., Kumari, S., Firoozi, A. A., & Oyagbola, I. (2020). Modelling of the swelling potential of soil treated with quicklime-activated rice husk ash using fuzzy logic. Umudike Journal of Engineering and Technology, 6(1), 1–22

    Google Scholar 

  26. Fityus, S., & Buzzi, O. (2009). The place of expansive clays in the framework of unsaturated soil mechanics. Applied Clay Science, 43, 150–155. https://doi.org/10.1016/j.clay.2008.08.005

    Article  Google Scholar 

  27. Miao, L. C., & Liu, S. Y. (2001). Engineering characteristics of expansive soil and engineering measures. Advances in Science and Technology of Water Resource, 48(2), 37–40 in Chinese.

    Google Scholar 

  28. Olubanwo, A. O., & Karadelis, J. N. (2015). Applied mixture optimization techniques for paste design of bonded roller-compacted fiber reinforced polymer modified concrete (BRCFRPMC) overlays. Materials and Structures, 48, 2023–2042. https://doi.org/10.1617/s11527-014-0291-x

    Article  Google Scholar 

  29. Mishra, B. (2015). A study on engineering behavior of black cotton soil and its stabilization by use of lime. International Journal of Science and Research, 4(11), 290–294

    Google Scholar 

  30. Oja, J., & Gundaliya, P. (2012). Study of black cotton soil characteristics with cement waste dust and lime. In Proceedings of the Nirma University International Conference on Engineering (NUiCONE 2012), pp. 110–118, Gujarat, India, December 2013.

  31. Scheffé, H. (1958). Experiments with mixtures. Journal of the Royal Statistical Society Series B., 20, 344–360

    MathSciNet  MATH  Google Scholar 

  32. Onyelowe, K. C., Alaneme, G. U., Van Bui, D., Van Nguyen, M., Ezugwu, C., Amhadi, T., Sosa, F., Orji, F., & Ugorji, B. (2019). Generalized review on EVD and constraints simplex method of materials properties optimization for civil engineering. Civil Engineering Journal, 5(3), 729–749

    Article  Google Scholar 

  33. Wangkananon, W., Phuaksaman, C., Koobkokkruad, T., & Natakankitkul, S. (2018). An extreme vertices mixture design approach to optimization of tyrosinase inhibition effects. Engineering Journal, 22(1), 175. https://doi.org/10.4186/ej.2018.22.1.175

    Article  Google Scholar 

  34. Jian-Tong, D., Pei-Yu, Y., Shu-Lin, L., & **-Quan, Z. (1999). Extreme vertices design of concrete with combined mineral admixtures. Cement and Concrete Research, 29(6), 957–960. https://doi.org/10.1016/S0008-8846(99)00069-1

    Article  Google Scholar 

  35. Cornell, J. A. (2011). Experiments with mixtures: Designs, models and the analysis of mixture data. (3rd ed.). John Wiley & Sons.

    Book  Google Scholar 

  36. McLean, R. A., & Anderson, V. L. (1966). Extreme vertices design of mixture experiments. Technometrics, 8(3), 447–454. https://doi.org/10.1080/00401706.1966.10490377

    Article  MathSciNet  Google Scholar 

  37. Scheffé, H. (1963). The simplex-centroid design for experiments with mixtures. Journal of the Royal Statistical Society: Series B, 25, 235–263

    MathSciNet  MATH  Google Scholar 

  38. Segad, M., Jönsson, B., Åkesson, T., & Cabane, B. (2010). Ca/Na montmorillonite: Structure, forces and swelling properties. American Chemical Society, Langmuir, 26(8), 5782–5790. https://doi.org/10.1021/la9036293

    Article  Google Scholar 

  39. British Standard (BS) 1377. (1990). Method of testing soils for civil engineering purpose. British Standards Institution, London.

  40. British Standard (BS) 1924. (1990). Method of testing for stabilized soils. British Standard Institution, London.

  41. Chen, F. H. (1988). Foundations on expansive soils. (2nd ed.). Elsevier Services Publications.

    Google Scholar 

  42. Onyelowe, K. C. (2017). Mathematical advances in soil bearing capacity. Electronic Journal of Geotechnical Engineering, 22(12), 4735–4743

    Google Scholar 

  43. Onyelowe, K. C., Alaneme, G. U., Igboayaka, C., Orji, F., Ugwuanyi, H., Van Bui, D., & Van Nguyen, M. (2019). Scheffe optimization of swelling California bearing ratio, compressive strength, and durability potentials of quarry dust stabilized soft clay soil. Materials Science for Energy Technologies, 2(1), 67–77. https://doi.org/10.1016/j.mset.2018.10.005

    Article  Google Scholar 

  44. Alaneme, G. U., & Mbadike, E. M. (2019). Optimization of flexural strength of palm nut fibre concrete using Scheffe’s theory. Materials Science for Energy Technologies, 2, 272–287. https://doi.org/10.1016/j.mset.2019.01.006

    Article  Google Scholar 

  45. Amhadi, T. S., & Assaf, G. J. (2018). Overview of soil stabilization methods in road construction. GeoMEast, 21–33, 2019. https://doi.org/10.1007/978-3-030-01911-2_3

    Article  Google Scholar 

  46. Eriksson, L. (2008). Design of experiments: Principles and applications. MKS Umetrics AB.

  47. Kumar, R. G., & Sanghvi, I. (2015). Optimization techniques: An overview for formulation development. Asian Journal of Pharmaceutical Research, 5, 217–221

    Google Scholar 

  48. Schwartz, J., Merck, S., & Dohme, R. L. (1981). Optimization techniques in product formulation. Journal of the Society of Cosmetic Chemists, 32, 287–301

    Google Scholar 

  49. Design expert 11. (2018). Design of experiment software. Stat-Ease Inc.

  50. Minitab 18. (2018). Minitab statistical software. Minitab Inc.

  51. Snee, R. D. (1979). Experiment design for mixture systems with multicomponent constraints. Communications in Statistics – Theory and Methods, 17, 149–159

    Google Scholar 

  52. Standard Specifications for Transportation, Material and Method of Sampling and Testing. (1986). 14th Edition, American Association of State Highway and Transportation Official (AASHTO), Washington D.C.

  53. American Standard for Testing Material. (1992). Annual book of standards Vol. 04.08. American Society for Testing and Materials.

  54. Alaneme, G. U., Onyelowe, K. C., Onyia, M. E., Van Bui, D., Mbadike, E. M., Ezugwu, C. N., Dimonyeka, M. U., Attah, I. C., Ogbonna, C., Abel, C., Ikpa, C. C., & Udousoro, I. M. (2020). Modeling volume change properties of hydrated-lime activated rice husk ash (HARHA) modified soft soil for construction purposes by artificial neural network (ANN). Umudike Journal of Engineering and Technology, 6(1), 88–110

    Google Scholar 

  55. Warren, K. W., & Kirby, T. M. (2004). Expansive clay soil: A widespread and costly geohazard. (pp. 24–28). Geostrata: Geo-Institute of the American Society Civil Engineers.

    Google Scholar 

  56. Salahudeen, A. B., & Sadeeq, J. A. (2019). California bearing ratio prediction of modified black clay using artificial neural networks. In S. Laryea, & E. Essah (Eds.), Proceedings West Africa Built Environment Research (WABER) Conference (pp. 268–281). 5–7 August 2019 Accra: Ghana. https://doi.org/10.33796/waberconference2019.19

  57. Brereton, R. G. (2003). Chemometrics: Data analysis for the laboratory and chemical plant. John Wiley & Sons.

    Book  Google Scholar 

  58. Alaneme, G. U., & Mbadike, E. M. (2019). Modelling of the mechanical properties of concrete with cement ratio partially replaced by aluminium waste and sawdust ash using artificial neural network. SN Applied Sciences. https://doi.org/10.1007/s42452-019-1504-2

    Article  Google Scholar 

  59. Atkinson, A. C., Donev, A. N., & Tobias, R. D. (2007). Optimal experimental design with SAS. Oxford University Press.

    MATH  Google Scholar 

  60. Smith, W. F. (2005). Experimental design for formulation. The American Statistical Association and the Society for Industrial and Applied Mathematics.

    Book  MATH  Google Scholar 

  61. Shobha, R., Hiremath, R., & Vanaja, K. (2016). Optimization techniques in pharmaceutical formulation and processing. Textbook of Industrial Pharmacy. Drug Delivery Systems, Cosmetic and Herbal Drug Technology, pp. 158–168.

  62. Borkowski, J. J. (2003). Using genetic algorithm to generate small exact response surface designs. Journal of Probability and Statistical Science, 1, 65–88

    Google Scholar 

  63. Stahle, L., & Wold, S. (1989). Analysis of variance (ANOVA). Chemometrics and Intelligent Laboratory Systems, 6, 259–272. https://doi.org/10.1155/2018/9308580

    Article  Google Scholar 

  64. Marquardt, D. W., & Snee, R. D. (1974). Test statistics for mixture models. Technometrics, 14, 533–537

    Article  MATH  Google Scholar 

  65. Bolton, S. (1997). Optimization techniques in pharmaceutical statistics. Practical and clinical applications. (3rd ed.). Marcel Dekker.

    Google Scholar 

  66. Cox, D. R. (1971). A note on polynomial response functions for mixtures. Biometrika, 58, 155–159. https://doi.org/10.1093/biomet/58.1.155

    Article  MATH  Google Scholar 

  67. Box, G. E. P., & Draper, N. R. (1959). A basis for the selection of a response surface design. Journal of American Statistical Association, 54, 622–654

    Article  MathSciNet  MATH  Google Scholar 

  68. Damiri, S., Pouretedal, H. R., & Bakhshi, O. (2016). An extreme vertices mixture design approach to the optimization of methylal production process using p-toluenesulfonic acid as catalyst. Chemical Engineering Research and Design, 112, 155–162. https://doi.org/10.1016/j.cherd.2016.06.012

    Article  Google Scholar 

  69. Snee, R. D., & Marquardt, D. W. (1974). Extreme vertices designs for linear mixture models. Technometrics, 16(3), 399–408

    Article  MATH  Google Scholar 

  70. Smith, W. F. (1931). Experimental design for formulation. American Statistical Association and Society for Industrial and Applied Mathematics.

    Google Scholar 

  71. Simon, M. J., Lagergreen, E. S., & Synder, K. A. (1997). Concrete mixture optimization using statistical mixture design methods. In: Proceedings of the PCI/FHWA International symposium on high performance concrete, New Orleans, pp. 230–244.

  72. Attah, I. C., Etim, R. K., Alaneme, G. U., & Bassey, O. B. (2020). Optimization of mechanical properties of rice husk ash concrete using Scheffe’s theory. SN Applied Science. https://doi.org/10.1007/s42452-020-2727-y

    Article  Google Scholar 

  73. Fedorov, V. V. (1972). Theory of optimal experiments. Academic press.

    Google Scholar 

  74. Alaneme, G. U., Dimonyeka, M. U., Ezeokpube, G. C., Uzoma, I. I., & Udousoro, I. M. (2021). Failure assessment of dysfunctional flexible pavement drainage facility using fuzzy analytical hierarchical process. Innovative Infrastructure Solutions. https://doi.org/10.1007/s41062-021-00487-z

    Article  Google Scholar 

  75. Coetzer, R., & Haines, L. M. (2017). The construction of D- and I-optimal designs for mixture experiments with linear constraints on the components. Chemometrics and Intelligent Laboratory Systems, 171, 112–124

    Article  Google Scholar 

  76. Esbensen, K. H., Guyot, D., Westad, F., & Houmoller, L. P. (2002). Multivariate data analysis, in practice: An introduction to multivariate data analysis and experimental design. Aalborg University.

    Google Scholar 

  77. Gorman, J. W. (1970). Fitting equations to mixture data with restraints on compositions. Journal of Quality Technology, 2, 186–194

    Article  Google Scholar 

  78. Mitchell, T. J. (1974). An algorithm for the construction of D-optimal experimental designs. Technometrics, 16, 203–210

    MathSciNet  MATH  Google Scholar 

  79. Alaneme, G. U., Mbadike, E. M., Iro, U. I., Udousoro, I. M., & Ifejimalu, W. C. (2021). Adaptive neuro-fuzzy inference system prediction model for the mechanical behaviour of rice husk ash and periwinkle shell concrete blend for sustainable construction. Asian Journal of Civil Engineering. https://doi.org/10.1007/s42107-021-00357-0

    Article  Google Scholar 

  80. Ozol-Godfrey, A., Anderson-Cook, C. M., & Montgomery, D. C. (2005). Fraction of design space plots for examining model robustness. Journal of Quality Technology, 37, 223–235

    Article  Google Scholar 

  81. Ding, J. T., Yan, P. Y., Liu, S. L., & Zhu, J. Q. (1999). Extreme vertices design of concrete with combined mineral admixtures. Cement and Concrete Research, 29(6), 957–960. https://doi.org/10.1016/S0008-8846(99)00069-1

    Article  Google Scholar 

  82. Hardin, R. H., & Sloane, N. J. A. (1993). A new approach to construction of optimal designs. Journal of Statistical and Planning Inference, 37, 339–369

    Article  MathSciNet  MATH  Google Scholar 

  83. Syafitri, U., Sartono, B., & Goos, P. (2015). I-optimal design of mixture experiments in the presence of ingredient availability constraints. Journal of Quality Technology, 47, 220–234

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imoh Christopher Attah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaneme, G.U., Attah, I.C., Etim, R.K. et al. Mechanical Properties Optimization of Soil—Cement Kiln Dust Mixture Using Extreme Vertex Design. Int. J. Pavement Res. Technol. 15, 719–750 (2022). https://doi.org/10.1007/s42947-021-00048-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-021-00048-8

Keywords

Navigation