Log in

A Lindqvist-type [W6O19]2‒ organic–inorganic compound: synthesis, characterization, antibacterial activity and preliminary studies on the mechanism of action

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

In this paper, a new organic–inorganic hybrid compound [Co(L)2]2[W6O19](1) (HL = 2-acetylpyridine thiosemicarbazone) was prepared and characterized. The compound 1 exhibits remarkable antibacterial activity by determination of minimum inhibitory concentration (MIC) against Staphylococcus aureus (S. aureus, 0.06 µg·mL−1) and Escherichia coli (E. coli, 0.24 µg·mL−1), respectively. Furthermore, the potential mechanism of compound 1 was studied in detail. The potential causes of bacteria death were cell wall/membrane disruption, inhibition of intracellular respiratory chain dehydrogenases (RCD) activity, destruction of reactive oxygen species (ROS) and depletion of glutathione (GSH).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P. Global trends in emerging infectious diseases. Nature. 2008;451(7181):990.

    Article  CAS  Google Scholar 

  2. Huedo C, Zani F, Mendiola A, Pradhan S, Sinha C, López-Torres E. Synthesis, antimicrobial activity and molecular docking of di- and triorganotin (IV) complexes with thiosemicarbazide derivatives. Appl Organometal Chem. 2019;33:e4700.

    Article  CAS  Google Scholar 

  3. Bijelic A, Aureliano M, Rompel A. The antibacterial activity of polyoxometalates: structures, antibiotic effects and future perspectives. Chem Commun. 2018;54(10):1153.

    Article  CAS  Google Scholar 

  4. She S, Bian ST, Hao J, Zhang JW, Zhang J, Wei YG. Aliphatic organoimido derivatives of polyoxometalates containing a bioactive ligand. Chem Eur J. 2014;20(51):16987.

    Article  CAS  Google Scholar 

  5. Saad A, Zhu W, Rousseau G, Mialane P, Marrot J, Haouas M, Taulelle F, Dessapt R, Serier BH, Rivière E, Kubo T, Oldfield E, Dolbecq A. Polyoxomolybdate bisphosphonate heterometallic complexes: synthesis, structure, and activity on a breast cancer cell line. Chem Eur J. 2015;21(29):10537.

    Article  CAS  Google Scholar 

  6. Judd DA, Nettles JH, Nevins N, Snyder JP, Liotta DC, Tang J, Ermolieff J, Schinazi RF, Hill CL. Polyoxometalate HIV-1 protease inhibitors. A new mode of protease inhibition. J Am Chem Soc. 2001;123(5):886.

    Article  CAS  Google Scholar 

  7. Wong EL, Sun RW, Chung NP, Lin CS, Zhu NY, Che C. A mixed-valent ruthenium-oxo oxalato cluster Na7[Ru43-O)4(C2O4)6] with potent anti-HIV activities. J Am Chem Soc. 2006;128(15):4938.

    Article  CAS  Google Scholar 

  8. Li JF, Chen ZJ, Zhou MC, **g JB, Li W, Wang Y, Wu LX, Wang LY, Wang YQ, Lee M. Polyoxometalate-driven self-assembly of short peptides into multivalent nanofibers with enhanced antibacterial activity. Angew Chem Int Ed. 2016;55(7):2592.

    Article  CAS  Google Scholar 

  9. Gonzalez A, Galvez N, Clemente-Leon M, Dominguez-Vera JM. Electrochromic polyoxometalate material as a sensor of bacterial activity. Chem Commun. 2015;51(50):10119.

    Article  CAS  Google Scholar 

  10. Misra A, Castillo IF, Muller DP, Gonzalez C, Eyssautier-Chuine S, Ziegler A, de la Fuente JM, Mitchell SG, Streb C. Polyoxometalate-ionic liquids (POM-ILs) as anticorrosion and antibacterial coatings for natural stones. Angew Chem Int Edit. 2018;57:14926.

    Article  CAS  Google Scholar 

  11. She S, Bian ST, Huo RC, Chen K, Huang ZH, Zhang JW, Hao J, Wei YG. Degradable organically-derivatized polyoxometalate with enhanced activity against glioblastoma cell line. Sci Rep. 2016;6(1):33529.

    Article  CAS  Google Scholar 

  12. Zhao M, Fang Y, Ma LH, Zhu XY, Jiang L, Li MX, Han QX. Synthesis, characterization and in vitro antibacterial mechanism study of two Keggin-type polyoxometalates. J Inorg Biochem. 2020;210:111131.

    Article  CAS  Google Scholar 

  13. Du X, Guo C, Hansel E, Doyle PS, Caffrey CR, Holler TP, McKerrow JH, Cohen FE. Synthesis and structure-activity relationship study of potent trypanocidal thio semicarbazone inhibitors of the trypanosomal cysteine protease cruzain. J Med Chem. 2002;45(13):2695.

    Article  CAS  Google Scholar 

  14. Khan SA, Kumar P, Joshi R, Iqbal PF, Saleem K. Synthesis and in vitro antibacterial activity of new steroidal thiosemicarbazone derivatives. Eur J Med Chem. 2009;43(9):2029.

    Article  CAS  Google Scholar 

  15. Mishra A, Kaushik NK, Verma AK, Gupta R. Synthesis, characterization and antibacterial activity of cobalt(III) complexes with pyridine-amide ligands. Eur J Med Chem. 2008;43(10):2189.

    Article  CAS  Google Scholar 

  16. Zhao HY, Li J, Fang Y, Chang BW, Meng QX, Li MX, Wang CZ, Zhu XF. Synthesis, characterization and bioactivities of a new covalent copper(II) compound derived from {P2Mo5O23}6− and thiosemicarbazones. Bioorg Med Chem Lett. 2020;30(1):126781.

    Article  CAS  Google Scholar 

  17. Kowol CR, Trondl R, Arion VB, Jakupec MA, Lichtscheidl I, Keppler BK. Fluorescence properties and cellular distribution of the investigational anticancer drug triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone) and its zinc(II) complex. Dalton Trans. 2010;39(3):704.

    Article  CAS  Google Scholar 

  18. Li MX, Chen CL, Zhang D, Niu JY, Ji BS. Mn(II), Co(II) and Zn(II) complexes with heterocyclic substituted thiosemicarbazones: synthesis, characterization, X-ray crystal structures and antitumor comparison. Eur J Med Chem. 2010;45(7):3169.

    Article  CAS  Google Scholar 

  19. Chen CL, Zhu XF, Li MX, Guo HM, Niu JY. Antitumor activity of manganese(II) and cobalt(III) complexes of 2-acetylpyridine schiff bases derived from S-methyldithiocarbazate: synthesis, characterization, and crystal structure of the manganese(II) complex of 2-acetylpyridine S-methyldithiocarbazate. J Coord Chem. 2011;37(6):435.

    Article  CAS  Google Scholar 

  20. Zhu XF, Fan YH, Wang Q, Chen CL, Li MX, Zhao JW, Zhou J. Biological activity of Co(III) and Ni(II) complexes of pyridine-2-carbaldehyde N(4)-methylthiosemicarbazone: synthesis, characterization, crystal structure of Co(III) complex of pyridine-2-carbaldehyde N(4)-methylthiosemicarbazone. J Coord Chem. 2012;38(7):478.

    Article  CAS  Google Scholar 

  21. Li YK, Yang M, Li MX, Yu H, Wu HC, **e SQ. Synthesis, crystal structure and biological evaluation of a main group seven-coordinated bismuth(III) complex with 2-acetylpyridine N4-phenylthiosemicarbazone. Bioorg Med Chem Lett. 2013;23(8):2288.

    Article  CAS  Google Scholar 

  22. Kasuga NC, Sekino K, Ishikawa M, Honda A, Yokoyama M, Nakano S, Shimada N, Koumo C, Nomiya K. Synthesis, structural characterization and antimicrobial activities of 12 zinc(II) complexes with four thiosemicarbazone and two semicarbazone ligands. J Inorg Biochem. 2003;96(2–3):298.

    Article  CAS  Google Scholar 

  23. Zhang LJ, Wei YG, Wang CC, Guo HY, Wang P. Hexatungstate subunit as building block in the hydrothermal synthesis of organic-inorganic hybrid materials: synthesis, structure and optical properties of Co2(bpy)6 (W6O19)2 (bpy=4,4’-bipyridine). J Solid State Chem. 2004;177(10):3433.

    Article  CAS  Google Scholar 

  24. Liu L, Shi W, Chen XY, Chen YL, Chen P. Synthesis and crystal structure of a series of transition metal complexes with sulfur-containing ligands. Synth React Inorg Met Org Chem. 2006;36(7):549.

    Article  CAS  Google Scholar 

  25. Castello WS, Spera MBM, Gomes AF, Gozzo FC, Lustri WR, Formiga ALB. Corbi PP Synthesis, spectroscopic characterization, and antibacterial assays in vitro of a new platinum (II) complex with methionine sulfoxide. J Coord Chem. 2011;64(2):272.

    Article  CAS  Google Scholar 

  26. Wang J, Wang YT, Fang Y, Lu YL, Li MX. Tin thiocarbonohydrazone complexes: synthesis, crystal structures and biological evaluation. Toxicol Res. 2019;8:862.

    Article  CAS  Google Scholar 

  27. Liu Y, Wang XL, Zhao J, Lin HY, Xu N, Zhang JW, Yu BY. A series of flexible bis(pyridyl)bis(tetrazole)-modulated coordination polymers: construction, electrochemical properties, dye adsorption and magnetic properties. CrystEngComm. 2019;21:6613.

    Article  CAS  Google Scholar 

  28. Wang XL, Zhang HX, Wang X, Zhang S, Liu JH, Lin HY, Liu GC. A novel two-fold interpenetrating 3D metal-organic framework based on Lindqvist-type hexamolybdate: synthesis, structure, electrochemical and photocatalytic properties. Inorg Chem Commun. 2018;88:60.

    Article  CAS  Google Scholar 

  29. Fang Y, Wang YT, Zhao M, Liu YL, Li MX, Zhang YH. Bismuth(III) and diorganotin(IV) complexes of bis(2-acetylpyridine) thiocarbono hydrazone: synthesis, characterization, and apoptosis mechanism of action in vitro. Polyhedron. 2018;155:254.

    Article  CAS  Google Scholar 

  30. Tai YX, Ji YM, Lu YL, Li MX, Wu YY, Han QX. Cadmium(II) and indium(III) complexes derived from 2-benzoylpyridine N(4)-cyclohexylthiosemicarbazone: synthesis, crystal structures, spectroscopic characterization and cytotoxicity. Synth Met. 2016;219:109.

    Article  CAS  Google Scholar 

  31. Chen YD, Zhang CL, Yang CP, Zhang JW, Zheng K, Fang QH. Waugh type [CoMo9O32]6– cluster with atomically dispersed Co3+ derives from Anderson type [CoMo6O19]3– for photocatalytic oxygen molecule activation. Nanoscale. 2017;9:15332.

    Article  CAS  Google Scholar 

  32. Zhang Y, Shao Q, Long S, Long S, Huang XQ. Cobalt-molybdenum nanosheet arrays as highly efficient and stable earth-abundant electrocatalysts for overall water splitting. Nano Energy. 2018;45:448.

    Article  CAS  Google Scholar 

  33. Zhong WZ, Liu MQ, Dai J, Yang J, Mao LQ, Yin DL. Synergistic hollow CoMo oxide dual catalysis for tandem oxygen transfer: preferred aerobic epoxidation of cyclohexene to 1,2-epoxycyclohexane. Appl Catal B. 2018;225:180.

    Article  CAS  Google Scholar 

  34. Laureti S, Agostinelli E, Scavia G, Varvaro G, Albertini VR, Generosi A, Paci B, Mezzi A, Kaciulis S. Effect of oxygen partial pressure on PLD cobalt oxide films. Appl Surf Sci. 2008;254:5111.

    Article  CAS  Google Scholar 

  35. Vaz CAF, Prabhakaran D, Altman EI, Henrich VE. Experimental study of the interfacial cobalt oxide in Co3O4/α-Al2O3 (0001) epitaxial films. Phys Rev B. 2009;80(15):155457.

    Article  CAS  Google Scholar 

  36. Esmaielzadeh S, Sharif-Mohammadi M. Tin(IV) schiff base complexes: synthesis, thermodynamic and anti bacterial investigation, experimental and theoretical studies. Bull Chem Soc Ethiop. 2019;33:77.

    Article  CAS  Google Scholar 

  37. Ahmed B, Ameen F, Rizvi A, Ali K, Sonbol H, Zaidi A, Khan MS, Musarrat J. Destruction of cell topography, morphology, membrane, inhibition of respiration, biofilm formation, and bioactive molecule production by nanoparticles of Ag, ZnO, CuO, TiO2, and Al2O3 toward beneficial soil bacteria. ACS Omega. 2020;5(14):7861.

    Article  CAS  Google Scholar 

  38. Fang Y, **ng CL, Liu J, Zhang YH, Li MX, Han QX. Supermolecular film crosslinked by polyoxometalate and chitosan with superior antimicrobial effect. Int J Biol Macromol. 2020;154:732.

    Article  CAS  Google Scholar 

  39. Pan Y, Luo ZD, Wang XX, Chen QY, Chen JH, Guan YC, Liu D, Xu HJ, Liu JQ. A versatile and multifunctional metal–organic framework nanocomposite toward chemo-photodynamic therapy. Dalton Trans. 2020;49:5291.

    Article  CAS  Google Scholar 

  40. Jia XH, Ahmad I, Yang R, Wang C. Versatile graphene-based photothermal nanocomposites for effectively capturing and killing bacteria, and for destroying bacterial biofilms. J Mater Chem B. 2017;5(13):2459.

    Article  CAS  Google Scholar 

  41. Wang K, Qian MP, Qi HL, Gao Q, Zhang CX. Multifunctional zeolitic imidazolate framework-8 for real-time monitoring ATP fluctuation in mitochondria during photodynamic therapy. Nanoscale. 2020;12:15663.

    Article  CAS  Google Scholar 

  42. Aureliano M, Fraqueza G, Ohlin CA. Ion pumps as biological targets for decavanadate. Dalton Trans. 2013;42(33):11770.

    Article  CAS  Google Scholar 

  43. Fang Y, **ng CL, Zhan SX, Zhao M, Li MX, Liu HL. A polyoxometalate-modified magnetic nanocomposite: a promising antibacterial material for water treatment. J Mater Chem B. 2019;7:1933.

    Article  CAS  Google Scholar 

  44. Zhong YY, Li XS, Chen JH, Wang XX, Wei LT, Fang LQ, Kumar A, Zhuang SZ, Liu JQ. Recent advances in MOF-based nanoplatforms generating reactive species for chemodynamic therapy. Dalton Trans. 2020;49:11045.

    Article  CAS  Google Scholar 

  45. Tan GZ, Zhong YT, Yang LL, Jiang YD, Liu JQ, Ren F. A multifunctional MOF-based nanohybrid as injectable implant platform for drug synergistic oral cancer therapy. Chem Eng J. 2020;390:124446.

    Article  CAS  Google Scholar 

  46. Banerjee M, Mallick S, Paul A, Chattopadhyay A, Ghosh SS. Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan-silver nanoparticle composite. Langmuir. 2010;26(8):5901.

    Article  CAS  Google Scholar 

  47. Liu SB, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang RG, Kong J, Chen Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano. 2011;5(9):6971.

    Article  CAS  Google Scholar 

  48. Mukherjee S, Chowdhury D, Kotcherlakota R, Patra S, Bhadra MP, Sreedhar B, Patra CR. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics. 2014;4(3):316.

    Article  Google Scholar 

  49. Winterbourn CC. Regulation of intracellular glutathione. Redox Biol. 2019;22:101086.

    Article  CAS  Google Scholar 

  50. Winterbourn CC, Metodiewa D. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radical Biol Med. 1999;27(3–4):322.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21671055), Henan University First-class Discipline Cultivation Project (Grant No. 2020YLZDYJ06), Medical Interdisciplinary Training Program of Henan University of China (Grant No. CJ1205A0240007) and the Scientific and Technological Project of Henan province (Grant No. 212102310852).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Xue Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Zhu, XY., Li, YZ. et al. A Lindqvist-type [W6O19]2‒ organic–inorganic compound: synthesis, characterization, antibacterial activity and preliminary studies on the mechanism of action. Tungsten 4, 121–129 (2022). https://doi.org/10.1007/s42864-021-00073-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-021-00073-x

Keywords

Navigation