Log in

SYNTHESIS AND CHARACTERIZATION OF ORDERED MESOPOROUS MCM-41 FROM NATURAL CHLORITE AND ITS APPLICATION IN METHYLENE BLUE ADSORPTION

  • Published:
Clays and Clay Minerals

Abstract

Mesoporous materials have a wide range of applications in the fields of nanotechnology, biotechnology, information technology, and medicine, but historically, the resource materials used for their synthesis have been expensive. Natural silicate minerals are characterized by their abundance, low cost, and large SiO2 contents, making them an alternative silicon source for mesoporous silica. The objective of the present study was to determine the utility of natural chlorite as the source of Si for synthesizing hexagonal mesoporous silica materials (MCM-41). The natural chlorite was pretreated by acid leaching and calcination, followed by a hydrothermal reaction with cetyltrimethylammonium bromide (CTAB) as the template, and subsequent calcination to prepare MCM-41. The structures and the porosity of MCM-41 were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), 29Si magic-angle spinning solid-state nuclear magnetic resonance spectroscopy (29Si MAS NMR), and N2 adsorption–desorption measurements. The mechanism of structural evolution from natural chlorite to MCM-41 was investigated using these techniques. Calcination of chlorite results in amorphization and partial structural breakdown, while subsequent acid leaching dissolves the Mg and Al in the octahedral sheets to leave the Si–O framework as a silicon source. 29Si MAS NMR results revealed that the ratio of Q4/Q3 increased from 0.91 to 1.21 after hydrothermal synthesis of MCM-41 from leached chlorite, demonstrating more polymerization of the Si–O structure in MCM-41. The final MCM-41 products were amorphous SiO2, with a large surface area of 630 m2/g, a pore volume of 0.46 mL/g, and a narrow pore-size distribution of 2.8 nm. MCM-41 showed favorable adsorption toward methylene blue (MB) with a monolayer adsorption capacity of up to 302 mg/g, indicating potential for application in adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7.
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amama, P. B., Lim, S., Ciuparu, D., Pfefferle, L., & Haller, G. L. (2005). Hydrothermal synthesis of MCM-41 using different ratios of colloidal and soluble silica. Microporous and Mesoporous Materials, 81, 191–200.

    Article  Google Scholar 

  • Angelos, S., Liong, M., Choi, E., & Zink, J. I. (2008). Mesoporous silicate materials as substrates for molecular machines and drug delivery. Chemical Engineering Journal, 137, 4–13.

    Article  Google Scholar 

  • Ariga, K., Vinu, A., Yamauchi, Y., Ji, Q., & Hill, J. P. (2012). Nanoarchitectonics for Mesoporous Materials. Bulletin of the Chemical Society of Japan, 85, 1–32.

    Article  Google Scholar 

  • Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society, 73, 373–380.

    Article  Google Scholar 

  • Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T. W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., & Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114, 10834–10843.

    Article  Google Scholar 

  • Chen, H., & Wang, Y. (2002). Preparation of MCM-41 with high thermal stability and complementary textural porosity. Ceramics International, 28, 541–547.

    Article  Google Scholar 

  • Chen, Q., Zhu, R., Fu, H., Ma, L., Zhu, J., He, H., & Deng, Y. (2018). From natural clay minerals to porous silicon nanoparticles. Microporous and Mesoporous Materials, 260, 76–83.

    Article  Google Scholar 

  • Chen, H., Yang, H., & **, Y. (2019). Microporous and mesoporous materials highly ordered and hexagonal mesoporous silica materials with large specific surface from natural rectorite mineral. Microporous and Mesoporous Materials, 279, 53–60.

    Article  Google Scholar 

  • Costa, J. A. S., de Jesus, R. A., Santos, D. O., Mano, J. F., Romão, L. P. C., & Paranhos, C. M. (2020). Recent progresses in the adsorption of organic, inorganic, and gas compounds by MCM-41-based mesoporous materials. Microporous and Mesoporous Materials, 291, 109698.

    Article  Google Scholar 

  • Du, C., & Yang, H. (2009). Simple synthesis and characterization of nanoporous materials from talc. Clays and Clay Minerals, 57, 290–301.

    Article  Google Scholar 

  • Du, C., & Yang, H. (2012). Investigation of the physicochemical aspects from natural kaolin to Al-MCM-41 mesoporous materials. Journal of Colloid and Interface Science, 369, 216–222.

    Article  Google Scholar 

  • Duer, M. J. (2001). Solid-State NMR Spectroscopy Principles and Applications. John Wiley & Sons, New Jersey, USA, 592 pp.

  • Eftekhari, S., Habibi-Yangjeh, A., & Sohrabnezhad, S. H. (2010). Application of AlMCM-41 for competitive adsorption of methylene blue and rhodamine B: Thermodynamic and kinetic studies. Journal of Hazardous Materials, 178, 349–355.

    Article  Google Scholar 

  • Firouzi, A., Kumar, D., Bull, L. M., Besier, T., Sieger, P., Huo, Q., et al. (1995). Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science, 267, 1138–1143.

    Article  Google Scholar 

  • Freundlich, H. M. F. (1906). Over the adsorption in solution. The Journal of Physical Chemistry, 57, 385.

    Google Scholar 

  • Guan, Y., Wang, S., Wang, X., Sun, C., Wang, Y., & Hu, L. (2018). Preparation of mesoporous Al-MCM-41 from natural palygorskite and its adsorption performance for hazardous aniline dye-basic fuchsin. Microporous and Mesoporous Materials, 265, 266–274.

    Article  Google Scholar 

  • He, H., Guo, J., **e, X., Lin, H., & Li, L. (2002). A microstructural study of acid-activated montmorillonite from Choushan, China. Clay Minerals, 37, 337–344.

    Article  Google Scholar 

  • He, J., Ma, K., **, J., Dong, Z., Wang, J., & Li, R. (2009). Preparation and characterization of octyl-modified ordered mesoporous carbon CMK-3 for phenol adsorption. Microporous and Mesoporous Materials, 121, 173–177.

    Article  Google Scholar 

  • Ho, K. Y., McKay, G., & Yeung, K. L. (2003). Selective adsorbents from ordered mesoporous silica. Langmuir, 19, 3019–3024.

    Article  Google Scholar 

  • Hong, H., Zhang, K., & Li, Z. (2010). Climatic and tectonic uplift evolution since ~7 Ma in Gyirong basin, southwestern Tibet plateau: clay mineral evidence. International Journal of Earth Sciences, 99, 1305–1315.

  • Igarashi, N., Koyano, K.A., Tanaka, Y., Nakata, S., Hashimoto, K., & Tatsumi, T. (2003). Investigation of the factors influencing the structural stability of mesoporous silica molecular sieves. Microporous and Mesoporous Materials, 59, 43–52.

  • **, S., Qiu, G., **ao, F., Chang, Y., Wan, C., & Yang, M. (2007). Investigation of the structural characterization of mesoporous molecular sieves MCM-41 from sepiolite. Journal of the American Ceramic Society, 90, 957–961.

  • Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359, 710–712.

    Article  Google Scholar 

  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38, 2221–2295.

    Article  Google Scholar 

  • Liepold, A., Roos, K., Reschetilowski, W., Esculcas, A. P., Rocha, J., Philippou, A., & Anderson, M. W. (1996). Textural, structural and acid properties of a catalytically active mesoporous aluminosilicate MCM-41. Journal of the Chemical Society, Faraday Transactions, 92, 4623.

    Article  Google Scholar 

  • Luan, Z., Cheng, C. F., Zhou, W., & Klinowski, J. (1995). Mesopore molecular sieve MCM-41 containing framework aluminum. The Journal of Physical Chemistry, 99, 1018–1024.

    Article  Google Scholar 

  • Mackenzie, K. J. D., Brown, I. W. M., Meinhold, R. H., & Bowden, M. E. (1985). Thermal Reactions of Pyrophyllite Studied by High-Resolution Solid-state 27Al and 29Si Nuclear Magnetic Resonance Spectroscopy. Journal of the American Ceramic Society, 68, 266–272.

    Article  Google Scholar 

  • Maletaškić, J., Stanković, N., Daneu, N., Babić, B., Stoiljković, M., Yoshida, K., & Matović, B. (2018). Acid leaching of natural chrysotile asbestos to mesoporous silica fibers. Physics and Chemistry of Minerals, 45, 343–351.

    Article  Google Scholar 

  • Mokhonoana, M. P., & Coville, N. J. (2010). Synthesis of [Si]-MCM-41 from TEOS and water glass: The water glass-enhanced condensation of TEOS under alkaline conditions. Journal of Sol-Gel Science and Technology, 54, 83–92.

    Article  Google Scholar 

  • Monnier, A., Schuth, F., Huo, Q., Kumar, D., Margolese, D., Maxwell, R. S., Stucky, G. D., Krishnamurty, M., Petroff, P., Firouzi, A., Janicke, M., & Chmelka, B. F. (1993). Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science, 261, 1299–1303.

    Article  Google Scholar 

  • Okada, K., Shimai, A., Takei, T., Hayashi, S., Yasumori, A., & MacKenzie, K. J. D. (1998). Preparation of microporous silica from metakaolinite by selective leaching method. Microporous and Mesoporous Materials, 21, 289–296.

    Article  Google Scholar 

  • Okada, K., Nakazawa, N., Kameshima, Y., Yasumori, A., Temuu**, J., MacKenzie, K. J. D., & Smith, M. E. (2002). Preparation and porous properties of materials prepared by selective leaching of phlogopite. Clays and Clay Minerals, 50, 624–632.

    Article  Google Scholar 

  • Okada, K., Arimitsu, N., Kameshima, Y., Nakajima, A., & MacKenzie, K. J. D. (2005). Preparation of porous silica from chlorite by selective acid leaching. Applied Clay Science, 30, 116–124.

    Article  Google Scholar 

  • Perathoner, S., Lanzafame, P., Passalacqua, R., Centi, G., Schlögl, R., & Su, D. S. (2006). Use of mesoporous SBA-15 for nanostructuring titania for photocatalytic applications. Microporous and Mesoporous Materials, 90, 347–361.

    Article  Google Scholar 

  • Redlich, O., & Peterson, D. L. (1959). A useful adsorption isotherm. The Journal of Physical Chemistry, 63, 1024–1024.

    Article  Google Scholar 

  • Seliem, M. K., Komarneni, S., & Abu Khadra, M. R. (2016). Phosphate removal from solution by composite of MCM-41 silica with rice husk: Kinetic and equilibrium studies. Microporous and Mesoporous Materials, 224, 51–57.

    Article  Google Scholar 

  • Shu, Z., Li, T., Zhou, J., Chen, Y., Yu, D., & Wang, Y. (2014). Template-free preparation of mesoporous silica and alumina from natural kaolinite and their application in methylene blue adsorption. Applied Clay Science, 102, 33–40.

    Article  Google Scholar 

  • Shu, Y., Shao, Y., Wei, X., Wang, X., Sun, Q., Zhang, Q., & Li, L. (2015). Synthesis and characterization of Ni-MCM-41 for methyl blue adsorption. Microporous and Mesoporous Materials, 214, 88–94.

    Article  Google Scholar 

  • Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., & Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57, 603–619.

    Article  Google Scholar 

  • Steudel, A., Kleeberg, R., Koch, C. B., Friedrich, F., & Emmerich, K. (2016). Thermal behavior of chlorites of the clinochlore-chamosite solid solution series: Oxidation of structural iron, hydrogen release and dehydroxylation. Applied Clay Science, 132–133, 626–634.

    Article  Google Scholar 

  • Temuu**, J., Okada, K., MacKenzie, K. J. D., & Jadambaa, T. (2001). Characterization of porous silica prepared from mechanically amorphized kaolinite by selective leaching. Powder Technology, 121, 259–262.

    Article  Google Scholar 

  • Tokarčíková, M., Kutláková, K. M., & Seidlerová, J. (2016). Leaching test for calcined kaolinite and kaolinite/TiO2 photoactive composite. Chemical Papers, 70, 1253–1261.

    Article  Google Scholar 

  • Vyshegorodtseva, E. V., Larichev, Y. V., & Mamontov, G. V. (2019). The influence of CTAB/Si ratio on the textural properties of MCM-41 prepared from sodium silicate. Journal of Sol-Gel Science and Technology, 92, 496–505.

    Article  Google Scholar 

  • **e, Y., Zhang, Y., Ouyang, J., & Yang, H. (2014). Mesoporous material Al-MCM-41 from natural halloysite. Physics and Chemistry of Minerals, 41, 497–503.

    Article  Google Scholar 

  • Yang, H., Tang, A., Ouyang, J., Li, M., & Mann, S. (2010). From natural attapulgite to mesoporous materials: Methodology, characterization and structural evolution. The The Journal of Physical Chemistry B, 114, 2390–2398.

    Article  Google Scholar 

  • Zhan, W., & Guggenheim, S. (1995). The dehydroxylation of chlorite and the formation of topotactic product phases. Clays and Clay Minerals, 43, 622–629.

    Article  Google Scholar 

  • Zhou, C., Sun, T., Gao, Q., Alshameri, A., Zhu, P., Wang, H., Qiu, X., Ma, Y., & Yan, C. (2014). Synthesis and characterization of ordered mesoporous aluminosilicate molecular sieve from natural halloysite. Journal of the Taiwan Institute of Chemical Engineers, 45, 1073–1079.

    Article  Google Scholar 

  • Zhou, C., Gao, Q., Luo, W., Zhou, Q., Wang, H., Yan, C., & Duan, P. (2015). Preparation, characterization and adsorption evaluation of spherical mesoporous Al-MCM-41 from coal fly ash. Journal of the Taiwan Institute of Chemical Engineers, 52, 147–157.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The research work was supported by the National Natural Science Foundation of China (No. 51772153). Experimental support from the Herbert Gleiter Institute of Nanoscience and the Materials Characterization Facility of Nan**g University of Science and Technology is acknowledged.

Funding

Funding sources are as stated in the Acknowledgments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Cui.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

(Received 17 September 2020; revised 23 February 2021; AE: Georgios D. Chryssikos)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhao, Q., Wang, D. et al. SYNTHESIS AND CHARACTERIZATION OF ORDERED MESOPOROUS MCM-41 FROM NATURAL CHLORITE AND ITS APPLICATION IN METHYLENE BLUE ADSORPTION. Clays Clay Miner. 69, 217–231 (2021). https://doi.org/10.1007/s42860-021-00119-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-021-00119-8

Keywords

Navigation