Log in

Analysis of Electronic Characteristics of Plasma-Enhanced Indium Zinc Oxide Thin Film Transistors

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

Indium zinc oxide (IZO) film has the characteristics of exceptional mobility and controllable resistivity. It is a promising oxide semiconductor material that is used to prepare oxide thin film transistors (TFTs). In this paper, a multi-stacked IZO TFT with exceptional electronic characteristics as a basic device is prepared by using a solution process. The plasma is injected into the active channel layer by simultaneously introducing O2 and N2 gas from an RF radical source. Depending on the oxygen flow concentration, the amount of plasma will also change, thereby showing which oxygen concentration will result in a more significant increase in electronic performance. Oxygen vacancies and lattice defects exist in the transport layer crystal. Oxygen plasma treatment can make the crystal structure more stable and optimize the electron mobility, the transfer of the multi-stacked IZO TFT, and the smoothness of the device surface. The amount of gas flow affects the optimization effect of the plasma on the device. The measured root mean square roughness is also ideally improved at a suitable gas flow rate. The improvement in multi-stacked IZO TFTs by the incorporation of plasma is obvious.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Myny K (2018) The development of flexible integrated circuits based on thin-film transistors. Nat Electron 1:30–39

    Article  Google Scholar 

  2. Nie S, Yang Y, He Y, Shi Y, Wan Q (2018) Flexible IZO homojunction TFTs with graphene oxide/chitosan composite gate dielectrics on paper substrates. IEEE Electron Device Lett 39:363–366

    Article  Google Scholar 

  3. Liu PT, Ruan DB, Yeh XY, Chiu YC, Zheng GT, Sze SM (2018) Highly responsive blue light sensor with amorphous indium-zinc-oxide thin-film transistor based architecture. Sci Rep 8:8153

    Article  Google Scholar 

  4. Zhu H, Shin E-S, Liu A, Ji D, Xu Y, Noh Y-Y (2020) Printable semiconductors for backplane TFTs of flexible OLED displays. Adv Funct Mater 30:1904588

    Article  Google Scholar 

  5. Ito M, Kon M, Miyazaki C, Ikeda N, Ishizaki M, Matsubara R et al (2008) Amorphous oxide TFT and their applications in electrophoretic displays. Phys Status Solidi A 205:1885–1894

    Article  Google Scholar 

  6. Han G, Cao S, Yang Q, Yang W, Guo T, Chen H (2018) High-performance all-solution-processed flexible photodetector arrays based on ultrashort channel amorphous oxide semiconductor transistors. ACS Appl Mater Interfaces 10:40631–40640

    Article  Google Scholar 

  7. Yang X, Jiang S, Li J, Zhang J-H, Li X-F (2018) Improvement of the long-term stability of ZnSnO thin film transistors by tungsten incorporation using a solution-process method. RSC Adv 8:20990–20995

    Article  Google Scholar 

  8. Heo JS, Jo J-W, Kang J, Jeong C-Y, Jeong HY, Kim SK et al (2016) Water-mediated photochemical treatments for low-temperature passivation of metal-oxide thin-film transistors. ACS Appl Mater Interfaces 8:10403–10412

    Article  Google Scholar 

  9. Lee W, Choi S, Kim J, Park SK, Kim Y-H (2019) Solution-free UV-based direct surface modification of oxide films for self-patterned metal-oxide thin-film transistors. Adv Electron Mater 5:1900073

    Article  Google Scholar 

  10. Kim DE, Cho SW, Kim B, Shin JH, Kang WJ, Yun MG et al (2016) Chemically robust solution-processed indium zinc oxide thin film transistors fabricated by back channel wet-etched Mo electrodes. RSC Adv 6:53310–53318

    Article  Google Scholar 

  11. Cheng H-C, Tsay C-Y (2010) Flexible a-IZO thin film transistors fabricated by solution processes. J Alloys Compd 507:L1–L3

    Article  Google Scholar 

  12. Li M, Huang D, Li M, Zhang W, Xu H, Zou J et al (2019) High-performance back-channel-etch thin-film transistors with zinc tin oxide as barrier layer via spray coating. IEEE Trans Electron Devices 66:3854–3860

    Article  Google Scholar 

  13. Liu P-T, Chang C-H, Chang C-J (2016) Suppression of photo-bias induced instability for amorphous indium tungsten oxide thin film transistors with bi-layer structure. Appl Phys Lett 108:261603

    Article  Google Scholar 

  14. Lee S, Shin J, Jang J (2017) Top interface engineering of flexible oxide thin-film transistors by splitting active layer. Adv Funct Mater 27:1604921

    Article  Google Scholar 

  15. Rim YS, Chen H, Zhu B, Bae S-H, Zhu S, Li PJ et al (2017) Interface engineering of metal oxide semiconductors for biosensing applications. Adv Mater Inter 4:1700020

    Article  Google Scholar 

  16. Guo X, Xu Y, Ogier S, Ng TN, Caironi M, Perinot A et al (2017) Current status and opportunities of organic thin-film transistor technologies. IEEE Trans Electron Devices 64:1906–1921

    Article  Google Scholar 

  17. Tiwari N, Chauhan RN, Liu P-T, Shieh H-PD (2016) Modification of intrinsic defects in IZO/IGZO thin films for reliable bilayer thin film transistors. RSC Adv 6:75693–75698

    Article  Google Scholar 

  18. Wang Z, Nayak PK, Caraveo-Frescas JA, Alshareef HN (2016) Recent developments in p-type oxide semiconductor materials and devices. Adv Mater 28:3831–3892

    Article  Google Scholar 

  19. Sharma A, Chourasia NK, Acharya V, Pal N, Biring S, Liu S-W et al (2020) Ultra-low voltage metal oxide thin film transistor by low-temperature annealed solution processed LiAlO2 gate dielectric. Electron Mater Lett 16:22–34

    Article  Google Scholar 

  20. Wang D, Zhang J, Peng Y, Bi Z, Bian X, Xa Z et al (2009) Plasma-activated nitrogen-doped p-type ZnO thin films with multi-buffer-layers grown on sapphire (0001) by L-MBE. J Alloys Compd 478:325–329

    Article  Google Scholar 

  21. Forn-Díaz P, García-Ripoll JJ, Peropadre B, Orgiazzi JL, Yurtalan MA, Belyansky R et al (2017) Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime. Nat Phys 13:39–43

    Article  Google Scholar 

  22. He F, Qin Y, Wan L, Su J, Lin Z, Zhang J et al (2020) Metal oxide heterojunctions for high performance solution grown oxide thin film transistors. Appl Surf Sci 527:146774

    Article  Google Scholar 

  23. Zhang X, Lang J, Yan Y, Zhang X, Zhong Y, Li L (2017) Plasma pretreatment of polycarbonate substrates for indium zinc oxide film deposition. Surf Interface Anal 49:376–383

    Article  Google Scholar 

  24. Hu C-F, Feng J-Y, Zhou J, Qu X-P (2016) Investigation of oxygen and argon plasma treatment on Mg-doped InZnO thin film transistors. Appl Phys A 122:941

    Article  Google Scholar 

  25. Sip CG, Folch A, Sirringhaus H (2014) Stable chemical bonding of porous membranes and poly(dimethylsiloxane) devices for long-term cell culture. Biomicrofluidics 8:036504

    Article  Google Scholar 

  26. Lee K, Kim Y-H, Yoon S-M, Kim J, Oh MS (2017) Effects of channel thickness on oxide thin film transistor with double-stacked channel layer. J Korean Phys Soc 71:561–564

    Article  Google Scholar 

  27. Liu W, Lin Y, Huang C, Wang C (2017) Device performance improvement of transparent thin-film transistors with a Ti-doped GaZnO/InGaZnO/Ti-doped GaZnO sandwich composite-channel structure. IEEE Trans Electron Devices 64:2533–2541

    Article  Google Scholar 

  28. Zhou J, Han G, Peng Y, Liu Y, Zhang J, Sun Q et al (2017) Ferroelectric negative capacitance GeSn PFETs with sub-20 mV/decade subthreshold swing. IEEE Electron Device Lett 38:1157–1160

    Article  Google Scholar 

  29. Hsu C, Huang P (2018) Effects of parasitic source/drain field plates on performances of channel-passivated amorphous InGaZnO thin-film transistors. IEEE Trans Electron Devices 65:4868–4874

    Article  Google Scholar 

  30. Zhu M, Liang G, Cui T, Varahramyan K (2005) Temperature and field dependent mobility in pentacene-based thin film transistors. Solid State Electron 49:884–888

    Article  Google Scholar 

  31. Park H-W, Song A, Choi D, Kim H-J, Kwon J-Y, Chung K-B (2017) Enhancement of the device performance and the stability with a homojunction-structured tungsten indium zinc oxide thin film transistor. Sci Rep 7:11634

    Article  Google Scholar 

  32. Liang T, Shao Y, Lu H, Zhou X, Deng X, Zhang S (2018) Scalability and stability enhancement in self-aligned top-gate indium-zinc-oxide TFTs with Al reacted source/drain. IEEE J Electron Devices Soc 6:680–684

    Article  Google Scholar 

  33. Park JC, Kim DJ, Lee H-N (2016) Characteristics of amorphous indium-zinc-oxide thin-film transistors fabricated with a self-aligned coplanar structure and an NH3 plasma contact do** process. Sci Adv Mater 8:295–300

    Article  Google Scholar 

  34. Ghibaudo G, Aouad M, Casse M, Martinie S, Poiroux T, Balestra F (2020) On the modelling of temperature dependence of subthreshold swing in MOSFETs down to cryogenic temperature. Solid State Electron 170:107820

    Article  Google Scholar 

  35. Tian H, Wang X, Zhao H, Mi W, Yang Y, Chiu P-W et al (2018) A graphene-based filament transistor with sub-10 mV dec−1 subthreshold swing. Adv Electron Mater 4:1700608

    Article  Google Scholar 

  36. Lin Y-H, Thomas SR, Faber H, Li R, McLachlan MA, Patsalas PA et al (2016) Al-doped ZnO transistors processed from solution at 120 °C. Adv Electron Mater 2:1600070

    Article  Google Scholar 

  37. Kumar M, Choudhary MK, Rimer JD (2018) Transient modes of zeolite surface growth from 3D gel-like islands to 2D single layers. Nat Commun 9:2129

    Article  Google Scholar 

  38. Teys SA (2017) Different growth mechanisms of Ge by Stranski–Krastanow on Si (111) and (001) surfaces: an STM study. Appl Surf Sci 392:1017–1025

    Article  Google Scholar 

  39. Yoshida R, Tosaka A, Shigeta Y (2018) Surface morphology and structure of Ge layer on Si(111) after solid phase epitaxy. Surf Sci 671:43–50

    Article  Google Scholar 

  40. Choi J, Lee J, ** Y, Myoung S, Baek S, Kwon DH et al (2016) Wide dynamic-range CMOS RMS power detector. IEEE Trans Microw Theory Tech 64:868–880

    Google Scholar 

  41. Qiang L, Liang X, Cai G, Pei Y, Yao R, Wang G (2018) Modeling drain current of indium zinc oxide thin film transistors prepared by solution deposition technique. Solid State Electron 144:22–27

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the Grand Information Technology Research Center support program (IITP-2021-2020-0-01462) supervised by the IITP (Institute for Information & communications Technology Planning & Evaluation), and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2020R1A6A1A12047945).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seong Gon Choi or Sung-** Kim.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, F., Yoo, S., Lee, JY. et al. Analysis of Electronic Characteristics of Plasma-Enhanced Indium Zinc Oxide Thin Film Transistors. J. Electr. Eng. Technol. 18, 509–514 (2023). https://doi.org/10.1007/s42835-022-01169-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42835-022-01169-1

Keywords

Navigation