Log in

Performance Comparison of Artificial Neural Network and Random Forest Models for Predicting the Compressive Strength of Fibre-Reinforced GGBS-Based Geopolymer Concrete Composites

  • Original Paper
  • Published:
Materials Circular Economy Aims and scope Submit manuscript

Abstract

Fibre reinforcement is essential in the geopolymer concrete (GPC) matrix to enhance deformation resistance and mitigate fracture propagation under tensile and bending stresses. However, a significant challenge is encountered in accurately forecasting the compressive strength of GPC reinforced with fibres. Recently, the application of machine learning (ML) models has proven effective in accurately forecasting GPC characteristics. However, due to its complexity and the scarcity of data available to researchers, develo** the strength prediction technique for fibre-reinforced GPC remains in its infancy relative to traditional concrete. Despite the extensive research on estimating compressive strength in GPCs, limited studies are available on fibre-reinforced geopolymer concrete (FRGPC) due to the complex underlying phenomena involved. Therefore, this research evaluates the effectiveness of random forest (RF) and artificial neural network (ANN) algorithms to predict the compressive strength of FRGPC produced using ground granulated blast-furnace slag (GGBS). The study encompasses a detailed dataset of 110 data points with 16 input parameters comprising various mix proportions of GGBS-based GPC and curing conditions with varying types and percentages of reinforcing fibres. The performance of both ANN and RF models is assessed using a range of performance indicators, including MAE, MSE, RMSE, MAPE, and R2, to evaluate their accuracy and generalization capabilities. K-fold cross-validation is applied to both models to prevent overfitting and to optimize their performance for the best output. The results demonstrate that both ANN and RF models exhibit promising performance in predicting the compressive strength properties. These techniques demonstrated strong predictive capabilities across various evaluation metrics. However, the RF algorithm revealed more accurate predictions of compressive strength than the ANN model. The models showed remarkable R2 values of 0.906 and 0.902 and RMSE values of 3.822 and 5.232 for the RF and ANN models, respectively. The specimen’s age, the ratio of alkaline solution to GGBS, and the sodium hydroxide dosage emerged as critical factors significantly influencing compressive strength, as indicated by the sensitivity analysis results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  • Abubakr A, Soliman A (2023) Impact behaviour of steel-fibre-reinforced alkali-activated slag concrete exposed to elevated temperatures. Materials 16(11):4096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad A, Ahmad W, Aslam F, Joyklad P (2022) Compressive strength prediction of fly ash-based geopolymer concrete via advanced machine learning techniques. Case Stud Constr Mater 16:e00840

    Google Scholar 

  • Ahmad MW, Mourshed M, Rezgui Y (2017) Trees vs neurons: comparison between random forest and ANN for high-resolution prediction of building energy consumption. Energ Build 147:77–89

    Article  Google Scholar 

  • Ahmed HU, Mohammed AS, Faraj RH, Qaidi SMA, Mohammed AA (2022) Compressive strength of geopolymer concrete modified with nano-silica: experimental and modeling investigations. Case Stud Constr Mater 16:e01036

    Google Scholar 

  • Ahmed HU, Mohammed AS, Mohammed AA (2022a) Multivariable models including artificial neural network and M5P-tree to forecast the stress at the failure of alkali-activated concrete at ambient curing condition and various mixture proportions. Neural Comput Applic 34(20):17853–17876

    Article  Google Scholar 

  • Ahmed HU, Mohammed AS, Mohammed AA (2022b) Proposing several model techniques including ANN and M5P-tree to predict the compressive strength of geopolymer concretes incorporated with nano-silica. Environ Sci Pollut Res 29(47):71232–71256

    Article  CAS  Google Scholar 

  • Ahmed HU, Mohammed AS, Faraj RH, Abdalla AA, Qaidi SMA, Sor NH, Mohammed AA (2023a) Innovative modeling techniques including MEP, ANN and FQ to forecast the compressive strength of geopolymer concrete modified with nanoparticles. Neural Comput & Applic 35(17):12453–12479

    Article  Google Scholar 

  • Ahmed HU, Mostafa RR, Mohammed A, Sihag P, Qadir A (2023b) Support vector regression (SVR) and grey wolf optimization (GWO) to predict the compressive strength of GGBFS-based geopolymer concrete. Neural Comput Applic 35(3):2909–2926

    Article  Google Scholar 

  • Alarfaj M, Qureshi HJ, Shahab MZ, Javed MF, Arifuzzaman M, Gamil Y (2024) Machine learning based prediction models for spilt tensile strength of fiber reinforced recycled aggregate concrete. Case Stud Constr Mater 20:e02836

    Google Scholar 

  • Albidah A, Alghannam M, Abbas H, Almusallam T, Al-Salloum Y (2021) Characteristics of metakaolin-based geopolymer concrete for different mix design parameters. J Mater Res Technol 10:84–98

    Article  CAS  Google Scholar 

  • Ali A, Riaz RD, Malik UJ, Abbas SB, Usman M, Shah MU, Kim IH, Hanif A, Faizan M (2023) Machine learning-based predictive model for tensile and flexural strength of 3D-printed concrete. Materials 16(11):4149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alyami M, Khan M, Fawad M, Nawaz R, Hammad AWA, Najeh T, Gamil Y (2024a) Predictive modeling for compressive strength of 3D printed fiber-reinforced concrete using machine learning algorithms. Case Stud Constr Mater 20:e02728

    Google Scholar 

  • Alyami M, Khan M, Javed MF, Ali M, Alabduljabbar H, Najeh T, Gamil Y (2024b) Application of metaheuristic optimization algorithms in predicting the compressive strength of 3D-printed fiber-reinforced concrete. Dev Built Environ 17:100307

    Article  Google Scholar 

  • Amin MN, Khan K, Ahmad W, Javed MF, Qureshi HJ, Saleem MU, Qadir MG, Faraz MI (2022a) Compressive strength estimation of geopolymer composites through novel computational approaches. Polymers 14(10):2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amin MN, Khan K, Javed MF, Aslam F, Qadir MG, Faraz MI (2022b) Prediction of mechanical properties of fly-ash/slag-based geopolymer concrete using ensemble and non-ensemble machine-learning techniques. Materials Article 15(10):1–20

    Google Scholar 

  • Aneja S, Sharma A, Gupta R, Yoo DY (2021) Bayesian regularized artificial neural network model to predict strength characteristics of fly-ash and bottom-ash based geopolymer concrete. Materials 14(7):1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arjun Raj PK, Sarath D, Nagarajan P, Thomas BS (2024) A simplified mix design for GGBS–dolomite geopolymer concrete using the taguchi method. Iranian Journal of Science and Technology, Transactions of Civil Engineering 1–24. https://doi.org/10.1007/s40996-024-01354-4

  • Aziz I, Hassan MIU, Haq EU, Abbass W (2022) Development of geopolymer foam concrete incorporating sugarcane bagasse ash and fly ash; 100% recycled and cement-less concrete. Arab J Sci Eng 48(4):5655–5665

    Article  Google Scholar 

  • Babu T, Thangaraj S (2023) A novel approach for the synthesis of eco-friendly geopolymer ternary blended mortar with GGBS, sugarcane bagasse ash, and sewage sludge ash under ambient curing conditions. KSCE J Civ Eng 27(8):3441–3454

    Article  Google Scholar 

  • Bai M, Zhang Z, Cao K, Li H, He C (2023) Prediction of compressive strength of fly ash-slag based geopolymer paste based on multi-optimized artificial neural network. Materials 16(3):1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basheer B, Antherjanam G (2020) Effect of silica fume in the mechanical properties of ambient cured GGBS based geopolymer concrete. In: Lecture notes in civil engineering, vol 46. Springer, pp 155–164

    Google Scholar 

  • Bellum RR, Muniraj K, Madduru SRC (2020) Exploration of mechanical and durability characteristics of fly ash-GGBFS based green geopolymer concrete. SN Appl Sci 2(5):919

    Article  CAS  Google Scholar 

  • Bellum RR, Venkatesh C, Madduru SRC (2021) Influence of red mud on performance enhancement of fly ash-based geopolymer concrete. Innov Infrastruct Solut 6(4):215

    Article  Google Scholar 

  • Cai J, Jiang J, Gao X, Ding M (2022) Improving the mechanical properties of fly ash-based geopolymer composites with PVA fiber and powder. Materials 15(7):2363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Wang Z, Khan AA, Khan M, Javed MF, Alaskar A, Eldin SM (2023) Development of predictive models for sustainable concrete via genetic programming-based algorithms. J Mater Res Technol 24:6391–6410

    Article  CAS  Google Scholar 

  • Chen X, Zhou M, Shen W, Zhu G, Ge X (2018) Mechanical properties and microstructure of metakaolin-based geopolymer compound-modified by polyacrylic emulsion and polypropylene fibers. Constr Build Mater 190:680–690

    Article  CAS  Google Scholar 

  • Chiranjeevi K, Vijayalakshmi MM, Praveenkumar TR (2021) Investigation of fly ash and rice husk ash-based geopolymer concrete using nano particles. Appl Nanosci (Switzerland) 13(1):839–846

    Article  Google Scholar 

  • Das P, Kashem A (2024) Hybrid machine learning approach to prediction of the compressive and flexural strengths of UHPC and parametric analysis with Shapley additive explanations. Case Stud Constr Mater 20:e02723

    Google Scholar 

  • Divvala S, Rani MS (2021) Strength properties and durability studies on modified geopolymer concrete composites incorporating GGBS and metakaolin. Appl Nanosci (Switzerland) 15:1–16

    Google Scholar 

  • El-Mir A, El-Zahab S, Sbartaï ZM, Homsi F, Saliba J, El-Hassan H (2023) Machine learning prediction of concrete compressive strength using rebound hammer test. J Build Eng 64:105538

    Article  Google Scholar 

  • Emarah DA (2022) Compressive strength analysis of fly ash-based geopolymer concrete using machine learning approaches. Results Mater 16:100347

    Article  CAS  Google Scholar 

  • Erfanimanesh A, Sharbatdar MK (2020) Mechanical and microstructural characteristics of geopolymer paste, mortar, and concrete containing local zeolite and slag activated by sodium carbonate. J Build Eng 32:101781

    Article  Google Scholar 

  • Eskandarinia M, Esmailzade M, Hojatkashani A, Rahmani A, Jahandari S (2022) Optimized alkali-activated slag-based concrete reinforced with recycled tire steel fiber. Materials 15(19):6623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farhan KZ, Johari MAM, Demirboğa R (2021) Impact of fiber reinforcements on properties of geopolymer composites: a review. In: Journal of Building Engineering, vol 44. Elsevier Ltd

    Google Scholar 

  • Ganesan N, Abraham R, Deepa Raj S (2015) Durability characteristics of steel fibre reinforced geopolymer concrete. Constr Build Mater 93:471–476

    Article  Google Scholar 

  • Ganesh AC, Muthukannan M (2019) Effect of polypropylene fibers over GGBS based geopolymer concrete under ambient curing. Int J Innov Technol Exp Eng 9(2S2):89–92

    Google Scholar 

  • Ganesh AC, Muthukannan M (2021) Development of high performance sustainable optimized fiber reinforced geopolymer concrete and prediction of compressive strength. J Clean Prod 282:124543

    Article  CAS  Google Scholar 

  • Ganesh AC, Muthukannan M, Sowmiya K (2020) Investigation on the effect of steel fibers in geopolymer concrete. IOP Conf Ser Mater Sci Eng 872(1):012156

    Article  CAS  Google Scholar 

  • Gomes RF, Dias DP, de Silva FA (2020) Determination of the fracture parameters of steel fiber-reinforced geopolymer concrete. Theor Appl Fract Mech 107:102568

    Article  CAS  Google Scholar 

  • Gupta P, Gupta N, Saxena KK, Goyal S (2022) Multilayer perceptron modelling of geopolymer composite incorporating fly ash and GGBS for prediction of compressive strength. Adv Mater Process Technol 8(sup3):1441–1455

    Google Scholar 

  • Hammad N, El-Nemr A, El-Deen Hasan H (2021) The performance of fiber GGBS based alkali-activated concrete. J Build Eng 42:102464

    Article  Google Scholar 

  • Huo W, Zhu Z, Sun H, Ma B, Yang L (2022) Development of machine learning models for the prediction of the compressive strength of calcium-based geopolymers. J Clean Prod 380(P2):135159

    Article  CAS  Google Scholar 

  • Husnain A, Iqbal M, Ashraf M, Javed MF, Alabduljabbar H, Abd Elminaam DS (2024) Machine learning approaches for predicting shielding effectiveness of carbon fiber-reinforced mortars. Case Stud Constr Mater 20:e03189

    Google Scholar 

  • Iftikhar B, Alih SC, Vafaei M, Javed MF, Ali M, Gamil Y, Rehman MF (2023) A machine learning-based genetic programming approach for the sustainable production of plastic sand paver blocks. J Mater Res Technol 25:5705–5719

    Article  Google Scholar 

  • Iqbal M, Elbaz K, Zhang D, Hu L, Jalal FE (2023) Prediction of residual tensile strength of glass fiber reinforced polymer bars in harsh alkaline concrete environment using fuzzy metaheuristic models. J Ocean Eng Sci 8(5):546–558

    Article  Google Scholar 

  • Jafarizadeh F, Larki B, Kazemi B, Mehrad M, Rashidi S, Ghavidel Neycharan J, Gandomgoun M, Gandomgoun MH (2023) A new robust predictive model for lost circulation rate using convolutional neural network: a case study from Marun Oilfield. Petroleum 9(3):468–485

    Article  Google Scholar 

  • Jayanthi V, Avudaiappan S, Amran M, Arunachalam KP, Qader DN, Delgado MC, Saavedra Flores EI, Rashid RSM (2023) Innovative use of micronized biomass silica-GGBS as agro-industrial by-products for the production of a sustainable high-strength geopolymer concrete. Case Stud Constr Mater 18:e01782

    Google Scholar 

  • **dal, B. B., Alomayri, T., Hasan, A., & Kaze, C. R. (2023). Geopolymer concrete with metakaolin for sustainability: a comprehensive review on raw material’s properties, synthesis, performance, and potential application. In Environmental Science and Pollution Research (30, 10, 25299–25324). Springer Science and Business Media Deutschland GmbH

    Google Scholar 

  • Kamalloo A, Ganjkhanlou Y, Aboutalebi SH, Nouranian H (2010) Modeling of compressive strength of Metakaolin based geopolymers by the use of artificial neural network. Int J Eng, Trans A: Basics 23(2):145–152

    Google Scholar 

  • Kang MC, Yoo DY, Gupta R (2021) Machine learning-based prediction for compressive and flexural strengths of steel fiber-reinforced concrete. Constr Build Mater 266:121117

    Article  Google Scholar 

  • Karunanithi S, Anandan S (2014) Flexural toughness properties of reinforced steel fibre incorporated alkali activated slag concrete. Adv Civil Eng 2014:1–12

    Article  Google Scholar 

  • Kashem A, Karim R, Malo SC, Das P, Datta SD, Alharthai M (2024) Hybrid data-driven approaches to predicting the compressive strength of ultra-high-performance concrete using SHAP and PDP analyses. Case Stud Constr Mater 20:e02991

    Google Scholar 

  • Kawade UR, Daule SN (2020) Enhancement of properties of geopolymer concrete with crimped steel fibers. In IOP Conference Series: Materials Science and Engineering 814(1):012008. IOP Publishing. https://doi.org/10.1088/1757-899X/814/1/012008

  • Khalaf AA, Kopecskó K, Merta I (2022) Prediction of the compressive strength of fly ash geopolymer concrete by an optimised neural network model. Polymers 14(7):1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MA, Memon SA, Farooq F, Javed MF, Aslam F, Alyousef R (2021a) Compressive strength of fly-ash-based geopolymer concrete by gene expression programming and random forest. Adv Civil Eng 2021:6618407

    Article  Google Scholar 

  • Khan MA, Zafar A, Farooq F, Javed MF, Alyousef R, Alabduljabbar H, Khan MI (2021b) Geopolymer concrete compressive strength via artificial neural network, adaptive neuro fuzzy interface system, and gene expression programming with K-fold cross validation. Front Mater 8:621163

    Article  Google Scholar 

  • Khan MI, Abbas YM (2023) Robust extreme gradient boosting regression model for compressive strength prediction of blast furnace slag and fly ash concrete. Mater Today Commun 35:105793

    Article  CAS  Google Scholar 

  • Kumar A, Arora HC, Kumar P, Kapoor NR, Nehdi ML (2024a) Machine learning based graphical interface for accurate estimation of FRP-concrete bond strength under diverse exposure conditions. Dev Built Environ 17:100311

    Article  Google Scholar 

  • Kumar P, Sharma S, Pratap B (2024b) Prediction of compressive strength of geopolymer fiber reinforced concrete using machine learning. Civil Engineering Infrastructures Journal. https://doi.org/10.22059/ceij.2024.364871.1956

  • Kumar A, Saravanan TJ, Bisht K, Kabeer KISA (2021) A review on the utilization of red mud for the production of geopolymer and alkali activated concrete. In: Construction and Building Materials, vol 302. Elsevier Ltd

    Google Scholar 

  • Kuppusamy Y, Jayaseelan R, Pandulu G, Kumar VS, Murali G, Dixit S, Vatin NI (2022) Artificial neural network with a cross-validation technique to predict the material design of eco-friendly engineered geopolymer composites. Materials 15(10):3443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Yan C, Zhang N, Farooqi MU, Xu S, Deifalla AF (2023) Flexural fracture parameters of polypropylene fiber reinforced geopolymer. J Mater Res Technol 24:1839–1855. https://doi.org/10.1016/j.jmrt.2023.03.035

    Article  CAS  Google Scholar 

  • Li N, Shi C, Zhang Z, Wang H, Liu Y (2019) A review on mixture design methods for geopolymer concrete. In: Composites Part B: Engineering, vol 178. Elsevier Ltd

    Google Scholar 

  • Li Q, Zhang P, Wang J, Wan J, Ling Y (2021) Mechanical and fracture properties of steel fiber-reinforced geopolymer concrete. Sci Eng Compos Mater 28(1):299–313

    Article  Google Scholar 

  • Liang X, Ji Y (2021) Mechanical properties and permeability of red mud-blast furnace slag-based geopolymer concrete. SN Appl Sci 3:23. https://doi.org/10.1007/s42452-020-03985-4

  • Ling Y, Wang K, Wang X, Li W (2021) Prediction of engineering properties of fly ash-based geopolymer using artificial neural networks. Neural Comput Applic 33(1):85–105

    Article  Google Scholar 

  • Manikandan P, Selija K, Vasugi V, Prem Kumar V, Natrayan L, Helen Santhi M, Senthil Kumaran G (2022) An artificial neural network based prediction of mechanical and durability characteristics of sustainable geopolymer composite. Adv Civil Eng 2022:9343330

    Article  Google Scholar 

  • Mehta V (2023) Machine learning approach for predicting concrete compressive, splitting tensile, and flexural strength with waste foundry sand. J Build Eng 70:106363

    Article  Google Scholar 

  • Midhun MS, Gunneswara Rao TD, Chaitanya Srikrishna T (2018) Mechanical and fracture properties of glass fiber reinforced geopolymer concrete. Adv Concr Constr 6(1):29–45

    Google Scholar 

  • Migunthanna J, Rajeev P, Sanjayan J (2023) Waste clay brick as a part binder for pavement grade geopolymer concrete. International Journal of Pavement Research and Technology 1–18. https://doi.org/10.1007/s42947-023-00312-z

  • Moradi MJ, Khaleghi M, Salimi J, Farhangi V, Ramezanianpour AM (2021) Predicting the compressive strength of concrete containing metakaolin with different properties using ANN. Measurement 183:109790. https://doi.org/10.1016/j.measurement.2021.109790

  • Mousavinejad SHGM, Gashti MF (2021) Effects of alkaline solution to binder ratio on fracture parameters of steel fiber reinforced heavyweight geopolymer concrete. Theor Appl Fract Mech 113:102967

    Article  Google Scholar 

  • Nagajothi S, Elavenil S (2020) Influence of aluminosilicate for the prediction of mechanical properties of geopolymer concrete – artificial neural network. Silicon 12(5):1011–1021

    Article  CAS  Google Scholar 

  • Nagalia G, Park Y, Abolmaali A, Aswath P (2016) Compressive strength and microstructural properties of fly ash–based geopolymer concrete. J Mater Civ Eng 28(12):04016144

    Article  Google Scholar 

  • Nazar S, Yang J, Amin MN, Khan K, Ashraf M, Aslam F, Javed MF, Eldin SM (2023) Machine learning interpretable-prediction models to evaluate the slump and strength of fly ash-based geopolymer. J Mater Res Technol 24:100–124

    Article  Google Scholar 

  • Nazari A, Pacheco Torgal F (2013) Predicting compressive strength of different geopolymers by artificial neural networks. Ceram Int 39(3):2247–2257

    Article  CAS  Google Scholar 

  • Nematollahi, B., Asce, S. M., Sanjayan, J., Uddin, F., & Shaikh, A. (2015). Tensile strain hardening behavior of PVA fiber-reinforced engineered geopolymer composite.

    Book  Google Scholar 

  • Nematollahi B, Sanjayan J, Chai JXH, Lu TM (2014) Properties of fresh and hardened glass fiber reinforced fly ash based geopolymer concrete. Key Eng Mater 594–595:629–633

    Google Scholar 

  • Nguyen MH, Mai HVT, Trinh SH, Ly HB (2022) A comparative assessment of tree-based predictive models to estimate geopolymer concrete compressive strength. Neural Comput Applic 35(9):6569–6588

    Article  Google Scholar 

  • Nikolov A, Rostovsky I, Nugteren H (2017) Geopolymer materials based on natural zeolite. Case Stud Constr Mater 6:198–205

    Google Scholar 

  • Niş A, Eren NA, Çevik A (2021) Effects of nanosilica and steel fibers on the impact resistance of slag based self-compacting alkali-activated concrete. Ceram Int 47(17):23905–23918

    Article  Google Scholar 

  • Oyebisi S, Alomayri T (2023) Artificial intelligence-based prediction of strengths of slag-ash-based geopolymer concrete using deep neural networks. Constr Build Mater 400:132606

    Article  Google Scholar 

  • Pakzad SS, Ghalehnovi M, Ganjifar A (2024) A comprehensive comparison of various machine learning algorithms used for predicting the splitting tensile strength of steel fiber-reinforced concrete. Case Stud Constr Mater 20:e03092

    Google Scholar 

  • Parhi SK, Patro SK (2023) Prediction of compressive strength of geopolymer concrete using a hybrid ensemble of grey wolf optimized machine learning estimators. J Build Eng 71:106521

    Article  Google Scholar 

  • Paudel S, Pudasaini A, Shrestha RK, Kharel E (2023) Compressive strength of concrete material using machine learning techniques. Clean Eng Technol 15:100661

    Article  Google Scholar 

  • Pavithra P, Srinivasula Reddy M, Dinakar P, Hanumantha Rao B, Satpathy BK, Mohanty AN (2016) A mix design procedure for geopolymer concrete with fly ash. J Clean Prod 133:117–125

    Article  CAS  Google Scholar 

  • Philip S, Nidhi M (2023a) A review on the material performance of geopolymer concrete as green building materials. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.04.110

  • Philip S, Nidhi M (2023b) Influence of fibres on the strain hardening behaviour of ultra-high-performance geopolymer concrete: a review. In: Proceedings of the 4th International Seminar on Science and Technology (ISST 2022), pp 262–276

    Chapter  Google Scholar 

  • Philip S, Nidhi M, Ahmed HU (2024) A comparative analysis of tree-based machine learning algorithms for predicting the mechanical properties of fibre-reinforced GGBS geopolymer concrete. Multiscale Multidiscip Model, Exp Des 6(4):1–29

    Google Scholar 

  • Praveen Kumar VV, Naga P, Dey S (2020) Influence of metakaolin on strength and durability characteristics of ground granulated blast furnace slag based geopolymer concrete. Struct Concr 21(3):1040–1050

    Article  Google Scholar 

  • Rabiaa E, Mohamed RAS, Sofi WH, Tawfik TA (2020) Develo** geopolymer concrete properties by using nanomaterials and steel fibers. Adv Mater Sci Eng 2020:1–12

    Article  Google Scholar 

  • Rahman J, Ahmed KS, Khan NI, Islam K, Mangalathu S (2021) Data-driven shear strength prediction of steel fiber reinforced concrete beams using machine learning approach. Eng Struc 233:111743. https://doi.org/10.1016/j.engstruct.2020.111743

    Article  Google Scholar 

  • Rahman SK, Al-Ameri R (2023) Structural assessment of Basalt FRP reinforced self-compacting geopolymer concrete using artificial neural network (ANN) modelling. Constr Build Mater 397:132464

    Article  CAS  Google Scholar 

  • Rahmati M, Toufigh V (2022) Evaluation of geopolymer concrete at high temperatures: an experimental study using machine learning. J Clean Prod 372:133608

    Article  CAS  Google Scholar 

  • Ranjbar N, Talebian S, Mehrali M, Kuenzel C, Cornelis Metselaar HS, Jumaat MZ (2016) Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites. Compos Sci Technol 122:73–81

    Article  CAS  Google Scholar 

  • Ranjbar N, Zhang M (2020) Fiber-reinforced geopolymer composites: a review. Cem Concr Compos 107:103498

    Article  CAS  Google Scholar 

  • Rao GM, Rao TDG (2018) A quantitative method of approach in designing the mix proportions of fly ash and GGBS-based geopolymer concrete. Aust J Civ Eng 16(1):53–63

    Article  Google Scholar 

  • Rao GS, Kumar BSC (2019) Experimental investigation of GGBS based geopolymer concrete with steel fibers. Int J Recent Technol Eng 7(6C2):49–55

    Google Scholar 

  • Rath B, Debnath R, Paul A, Velusamy P, Balamoorthy D (2020) Performance of natural rubber latex on calcined clay-based glass fiber-reinforced geopolymer concrete. Asian J Civ Eng 21(6):1051–1066

    Article  Google Scholar 

  • Rehman F, Khokhar SA, Khushnood RA (2022) ANN based predictive mimicker for mechanical and rheological properties of eco-friendly geopolymer concrete. Case Stud Constr Mater 17:e01536

    Google Scholar 

  • Ren R, Li L (2022) Impact of polyethylene fiber reinforcing index on the flexural toughness of geopolymer mortar. J Build Eng 57:104943

    Article  Google Scholar 

  • Rossi L, Patel RA, Dehn F (2023) Compressive behaviour of alkali-activated slag-based concrete and Portland cement concrete incorporating novel multiple hooked-end steel fibres. Materials and Structures 56(5):96. https://doi.org/10.1617/s11527-023-02180-2

  • Ryu GS, Lee YB, Koh KT, Chung YS (2013) The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr Build Mater 47:409–418

    Article  Google Scholar 

  • Saloni P, Pham TM (2020) Enhanced properties of high-silica rice husk ash-based geopolymer paste by incorporating basalt fibers. Constr Build Mater 245:118422

    Article  CAS  Google Scholar 

  • Saranya P, Nagarajan P, Pallikkara Shashikala A (2021) Performance studies on steel fiber-reinforced GGBS-dolomite geopolymer concrete. J Mater Civ Eng 33(2):04020447

    Article  CAS  Google Scholar 

  • Saranya P, Nagarajan P, Shashikala AP (2019) Development of ground-granulated blast-furnace slag-dolomite geopolymer concrete. ACI Mater J 116(6):235–243

    Google Scholar 

  • Sargam Y, Wang K, Cho IH (2021) Machine learning based prediction model for thermal conductivity of concrete. J Build Eng 34:101956

    Article  Google Scholar 

  • Sathanandam T, Awoyera PO, Vijayan V, Sathishkumar K (2017) Low carbon building: experimental insight on the use of fly ash and glass fibre for making geopolymer concrete. Sustain Environ Res 27(3):146–153

    Article  CAS  Google Scholar 

  • Shah SFA, Chen B, Zahid M, Ahmad MR (2022) Compressive strength prediction of one-part alkali activated material enabled by interpretable machine learning. Constr Build Mater 360:129534

    Article  CAS  Google Scholar 

  • Shahmansouri AA, Akbarzadeh Bengar H, Ghanbari S (2020) Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method. J Build Eng 31:101326

    Article  Google Scholar 

  • Shahmansouri AA, Yazdani M, Ghanbari S, Akbarzadeh Bengar H, Jafari A, Farrokh Ghatte H (2021) Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite. J Clean Prod 279:123697

    Article  CAS  Google Scholar 

  • Shaikh F, Haque S (2018) Behaviour of carbon and basalt fibres reinforced fly ash geopolymer at elevated temperatures. Int J Concr Struct Mater 12(1):1–12

    Article  Google Scholar 

  • Sharma U, Gupta N, Verma M (2023) Prediction of the compressive strength of Flyash and GGBS incorporated geopolymer concrete using artificial neural network. Asian J Civ Eng 24(8):2837–2850

    Article  Google Scholar 

  • Shilar FA, Ganachari SV, Patil VB, Javed S, Khan TMY, Baig RU (2022) Assessment of destructive and nondestructive analysis for GGBS based geopolymer concrete and its statistical analysis. Polymers 14(15):3132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siroky DS (2009) Navigating random forests and related advances in algorithmic modeling. Stat Surv 3:147–163

    Article  Google Scholar 

  • Solanki A, Parmar D, Patel P (2017) Effect of different aspect ratio steel fiber in slag based geopolymer concrete. Int J Eng Res Technol 6(4):1032–1035 www.ijert.org

    Google Scholar 

  • Sravanthi D, Himath Kumar Y, Sarath Chandra Kumar B (2020) Comparative study on flow characteristics, strength and durability of GGBS based geopolymer concrete. IOP Conf Ser Mater Sci Eng 912(6):062032

    Article  CAS  Google Scholar 

  • Tanu HM, Unnikrishnan S (2023) Mechanical strength and microstructure of GGBS-SCBA based geopolymer concrete. J Mater Res Technol 24:7816–7831

    Article  Google Scholar 

  • Thiagu H, Madhavi TC (2023) Optimization of fibre reinforced foam concrete for the mechanical behaviour by artificial neural network. Asian J Civ Eng 24(8):3175–3190

    Article  Google Scholar 

  • Timakul P, Rattanaprasit W, Aungkavattana P (2016) Improving compressive strength of fly ash-based geopolymer composites by basalt fibers addition. Ceram Int 42(5):6288–6295

    Article  CAS  Google Scholar 

  • Toufigh V, Jafari A (2021) Develo** a comprehensive prediction model for compressive strength of fly ash-based geopolymer concrete (FAGC). Constr Build Mater 277:122241

    Article  CAS  Google Scholar 

  • Upadhya A, Thakur MS, Sihag P, Kumar R, Kumar S, Afeeza A, Afzal A, Ahamed Saleel C (2023) Modelling and prediction of binder content using latest intelligent machine learning algorithms in carbon fiber reinforced asphalt concrete. Alex Eng J 65:131–149

    Article  Google Scholar 

  • Upreti K, Verma M, Agrawal M, Garg J, Kaushik R, Agrawal C, Singh D, Narayanasamy R (2022) Prediction of mechanical strength by using an artificial neural network and random forest algorithm. J Nanomater 2022:7791582

    Article  Google Scholar 

  • Verma NK, Meesala CR, Kumar S (2023) Develo** an ANN prediction model for compressive strength of fly ash-based geopolymer concrete with experimental investigation. Neural Comput Applic 35(14):10329–10345

    Article  Google Scholar 

  • Wang Q, Ahmad W, Ahmad A, Aslam F, Mohamed A, Vatin NI (2022a) Application of soft computing techniques to predict the strength of geopolymer composites. Polymers 14(6):1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Hu S, Sun X (2022b) Experimental investigation on the elastic modulus and fracture properties of basalt fiber–reinforced fly ash geopolymer concrete. Construction and Building Materials 338:127570. https://doi.org/10.1016/j.conbuildmat.2022.127570

  • Wang Y, Iqtidar A, Amin MN, Nazar S, Hassan AM, Ali M (2024a) Predictive modelling of compressive strength of fly ash and ground granulated blast furnace slag based geopolymer concrete using machine learning techniques. Case Stud Constr Mater 20:e03130

    Google Scholar 

  • Wang R, Zhang J, Lu Y, Huang J (2024b) Towards designing durable sculptural elements: ensemble learning in predicting compressive strength of fiber-reinforced nano-silica modified concrete. Buildings 14(2):396

    Article  Google Scholar 

  • **ao SH, Liao SJ, Zhong GQ, Guo YC, Lin JX, **e ZH, Song Y (2021) Dynamic properties of PVA short fiber reinforced low-calcium fly ash - slag geopolymer under an SHPB impact load. J Build Eng 44:103220

    Article  Google Scholar 

  • Xu Z, Liu Q, Long HY, Deng H, Chen Z, Hui D (2023) Influence of nano-SiO2 and steel fiber on mechanical and microstructural properties of red mud-based geopolymer concrete. Constr Build Mater 364:129990

    Article  CAS  Google Scholar 

  • Yadav AL, Sairam V, Srinivasan K, Muruganandam L (2020) Synthesis and characterization of geopolymer from metakaolin and sugarcane bagasse ash. Constr Build Mater 258:119231

    Article  CAS  Google Scholar 

  • Yaprak H, Karaci A, Demir I (2013) Prediction of the effect of varying cure conditions and w/c ratio on the compressive strength of concrete using artificial neural networks. Neural Comput Applic 22(1):133–141

    Article  Google Scholar 

  • Yoosuk P, Suksiripattanapong C, Sukontasukkul P, Chindaprasirt P (2021) Properties of polypropylene fiber reinforced cellular lightweight high calcium fly ash geopolymer mortar. Case Stud Constr Mater 15:e00730

    Google Scholar 

  • Yuvaraj S, Srinivasan K (2016) Performance of geopolymer concrete using varying sizes of steel fibres. Indian J Sci Technol. https://doi.org/10.17485/ijst/2016/v9i37/99221

  • Zhang P, Gao Z, Wang J, Guo J, Hu S, Ling Y (2020) Properties of fresh and hardened fly ash/slag based geopolymer concrete: a review. In: Journal of Cleaner Production, vol 270. Elsevier Ltd

    Google Scholar 

  • Zhang P, Han X, Zheng Y, Wan J, Hui D (2021) Effect of PVA fiber on mechanical properties of fly ash-based geopolymer concrete. Rev Adv Mater Sci 60(1):418–437

    Article  CAS  Google Scholar 

  • Zhang Z, Provis JL, Ma X, Reid A, Wang H (2018) Efflorescence and subflorescence induced microstructural and mechanical evolution in fly ash-based geopolymers. Cem Concr Compos 92:165–177

    Article  CAS  Google Scholar 

  • Zhang Z-H, Yao X, Zhu H-J, Hua S-D, Yue C (2009) Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin-fly ash based geopolymer. J Cent S Univ Technol 16(1):49–52

    Article  CAS  Google Scholar 

  • Zhou J, Tian Q, Nazar S, Huang J (2024) Hyper-tuning gene expression programming to develop interpretable prediction models for the strength of corncob ash-modified geopolymer concrete. Mater Today Commun 38:107885

    Article  CAS  Google Scholar 

  • Zuaiter M, El-Hassan H, El-Maaddawy T, El-Ariss B (2022) Properties of slag-fly ash blended geopolymer concrete reinforced with hybrid glass fibers. Buildings 12(8):1114

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the National Institute of Technology, Karaikal, Puducherry, India, for the continuous support and resources provided throughout this research.

Author information

Authors and Affiliations

Authors

Contributions

Shimol Philip—conceptualization, methodology design, model development, data analysis and interpretation, writing the original draft

Nidhi M.—conceptualization, methodology design, supervision, visualization, review and editing, final approval

Corresponding author

Correspondence to M Nidhi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Philip, S., Nidhi, M. Performance Comparison of Artificial Neural Network and Random Forest Models for Predicting the Compressive Strength of Fibre-Reinforced GGBS-Based Geopolymer Concrete Composites. Mater Circ Econ 6, 34 (2024). https://doi.org/10.1007/s42824-024-00128-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42824-024-00128-7

Keywords

Navigation