Log in

Influences of properties of magneto-electro-elastic materials of piezoelectric smart shells

  • Review
  • Published:
JMST Advances Aims and scope Submit manuscript

Abstract

Magneto-electro-elastic (MEE) materials are composed of piezoelectric (PE) phases, leading to the existence of a large number of interfaces between phases. Complex interface distributions bring a challenge for the dynamic fracture analysis of magneto-electro-elastic composites, as the available fracture mechanics approaches usually need to avoid material interfaces. This work establishes a dynamic domain-independent interaction integral (DII-integral) to extract the dynamic intensity factors (IFs) for MEE materials. Due to the properties of magneto-electro-elastic intelligent material in this paper and the coupling response of these materials to environmental and systemic changes and due to the increasing development of nanotechnology and materials science, the purpose of this paper is to investigate the mechanical and thermoplastics behavior of cylindrical micro-shells made of magneto-electro-elastic material. In other words, magneto-electro-elastic materials have a combination of properties of piezoelectric and magnetoelectric materials that these materials alone are not able to provide. Magneto-electro-elastic (MEE) materials are attracting extensive concern from the research and industrial communities owing to their unique advantages of the complex service environment and the coupled ability under mechanical, electric and magnetic loads. Therefore, the analysis of existing stresses in this type of structure to stabilize and increase their efficiency and useful life seems necessary. On the other hand, for these ceramic/polymer composite structures, a purposeful calibrated functional structure is proposed to eliminate the concentration and sudden change of stress at the junction of different layers, along with thermal resistance and low weight. Extraction of functionally calibrated shell differential equations using the first-order shear theory of shells made of magneto-electro-elastic intelligent material, using the stress-dependent theory of the modified stress pair with an independent longitudinal scale parameter, under arbitrary thermal conditions of displacement and thermal conductivity boundaries are an aspect of innovation that is addressed in this study.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. D.J. Leo, Engineering Analysis of Smart Material Systems (Wiley, Hoboken, 2007)

    Book  Google Scholar 

  2. D.M. Addington, D.L. Schodek, Smart Materials And New Technologies: For The Architecture and Design Professions (Routledge, London, 2005)

    Google Scholar 

  3. J. Van Suchtelen, Product properties: a new application of composite materials. Philips Res. Rep. 27(1), 28–37 (1972)

    Google Scholar 

  4. J. den Boomgaard, D.R. Terrell, R.A.J. Born, H. Giller, An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci. 9(10), 1705–1709 (1974)

    Article  Google Scholar 

  5. P.C.Y. Lee, A variational principle for the equations of piezoelectromagnetism in elastic dielectric crystals. J. Appl. Phys. 69(11), 7470–7473 (1991)

    Article  Google Scholar 

  6. J.Y. Li, M.L. Dunn, Micromechanics of magnetoelectroelastic composite materials: average fields and effective behavior. J. Intell. Mater. Syst. Struct. 9(6), 404–416 (1998)

    Article  Google Scholar 

  7. G.R. Buchanan, Layered versus multiphase magneto-electro-elastic composites. Compos. Part B Eng. 35(5), 413–420 (2004)

    Article  Google Scholar 

  8. C.-W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103(3), 1 (2008)

    Article  Google Scholar 

  9. A. Yousefi-Koma, D.G. Zimcik, Applications of smart structures to aircraft for performance enhancement. Can. Aeronaut. Sp. J. 49(4), 163–172 (2003)

    Article  Google Scholar 

  10. J. Valente, J.-Y. Ou, E. Plum, I.J. Youngs, N.I. Zheludev, A magneto-electro-optical effect in a plasmonic nanowire material. Nat. Commun. 6(1), 1–7 (2015)

    Article  Google Scholar 

  11. P. Franciosi, Transversally isotropic Magneto-Electro-Elastic composites with co-(dis) continuous phases. Int. J. Solids Struct. 50(6), 1013–1031 (2013)

    Article  Google Scholar 

  12. Z. Zhang, X. Wang, Effective multi-field properties of electro-magneto-thermoelastic composites estimated by finite element method approach. Acta Mech. Solida Sin. 28(2), 145–155 (2015)

    Article  Google Scholar 

  13. J. Lee, J.G. Boyd IV., D.C. Lagoudas, Effective properties of three-phase electro-magneto-elastic composites. Int. J. Eng. Sci. 43(10), 790–825 (2005)

    Article  MathSciNet  Google Scholar 

  14. I.A. Starkov, A.S. Starkov, Effective parameters of multilayered thermo-electro-magneto-elastic solids. Solid State Commun. 226, 5–7 (2016)

    Article  Google Scholar 

  15. M. Vinyas, S.C. Kattimani, A finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading. Struct. Eng. Mech. 62(5), 519–535 (2017)

    Google Scholar 

  16. M. Vinyas, S.C. Kattimani, S. Joladarashi, Hygrothermal coupling analysis of magneto-electroelastic beams using finite element methods. J. Therm. Stress. 41(8), 1063–1079 (2018)

    Article  Google Scholar 

  17. A. Alaimo, I. Benedetti, A. Milazzo, A finite element formulation for large deflection of multilayered magneto-electro-elastic plates. Compos. Struct. 107, 643–653 (2014)

    Article  Google Scholar 

  18. A. Milazzo, Large deflection of magneto-electro-elastic laminated plates. Appl. Math. Model. 38(5–6), 1737–1752 (2014)

    Article  MathSciNet  Google Scholar 

  19. C.X. Xue, E. Pan, S.Y. Zhang, H.J. Chu, Large deflection of a rectangular magnetoelectroelastic thin plate. Mech. Res. Commun. 38(7), 518–523 (2011)

    Article  Google Scholar 

  20. M.-F. Liu, An exact deformation analysis for the magneto-electro-elastic fiber-reinforced thin plate. Appl. Math. Model. 35(5), 2443–2461 (2011)

    Article  MathSciNet  Google Scholar 

  21. H.-Y. Kuo, E. Pan, Effective magnetoelectric effect in multicoated circular fibrous multiferroic composites. J. Appl. Phys. 109(10), 104901 (2011)

    Article  Google Scholar 

  22. P.L. Bishay, J. Sladek, V. Sladek, S.N. Atluri, Analysis of functionally graded magneto-electro-elastic composites using hybrid/mixed finite elements and node-wise material properties. Comput. Mater. Contin. 29(3), 213 (2012)

    Google Scholar 

  23. C.-C. Ma, J.-M. Lee, Theoretical analysis of in-plane problem in functionally graded nonhomogeneous magnetoelectroelastic bimaterials. Int. J. Solids Struct. 46(24), 4208–4220 (2009)

    Article  Google Scholar 

  24. T.M. Badri, H.H. Al-Kayiem, Analytical solution for simply supported and multilayered magneto-thermo-electro-elastic plates. Asian J. Sci. Res. 6(2), 236–244 (2012)

    Article  Google Scholar 

  25. A.H. Akbarzadeh, Z.T. Chen, Magnetoelectroelastic behavior of rotating cylinders resting on an elastic foundation under hygrothermal loading. Smart Mater. Struct. 21(12), 125013 (2012)

    Article  Google Scholar 

  26. M. Vinyas, S.C. Kattimani, Hygrothermal analysis of magneto-electro-elastic plate using 3D finite element analysis. Compos. Struct. 180, 617–637 (2017)

    Article  Google Scholar 

  27. V. Mahesh, S. Kattimani, D. Harursampath, N.-T. Trung, Coupled evaluation of the free vibration characteristics of magneto-electro-elastic skew plates in hygrothermal environment. Smart Struct. Syst. 24(2), 267–292 (2019)

    Google Scholar 

  28. M. Vinyas, G. Nischith, M.A.R. Loja, F. Ebrahimi, N.D. Duc, Numerical analysis of the vibration response of skew magneto-electro-elastic plates based on the higher-order shear deformation theory. Compos. Struct. 214, 132–142 (2019)

    Article  Google Scholar 

  29. M. Vinyas, S.C. Kattimani, Investigation of the effect of BaTiO3/CoFe2O4 particle arrangement on the static response of magneto-electro-thermo-elastic plates. Compos. Struct. 185, 51–64 (2018)

    Article  Google Scholar 

  30. J. Sladek, V. Sladek, S. Krahulec, E. Pan, The MLPG analyses of large deflections of magnetoelectroelastic plates. Eng. Anal. Bound. Elem. 37(4), 673–682 (2013)

    Article  MathSciNet  Google Scholar 

  31. R.G. Lage, C.M.M. Soares, C.A.M. Soares, J.N. Reddy, Layerwise partial mixed finite element analysis of magneto-electro-elastic plates. Comput. Struct. 82(17–19), 1293–1301 (2004)

    Article  Google Scholar 

  32. A.M. Zenkour, I.A. Abbas, Magneto-thermoelastic response of an infinite functionally graded cylinder using the finite element method. J. Vib. Control 20(12), 1907–1919 (2014)

    Article  MathSciNet  Google Scholar 

  33. O.P. Niraula, B.L. Wang, A magneto-electro-elastic material with a penny-shaped crack subjected to temperature loading. Acta Mech. 187(1–4), 151–168 (2006)

    Article  Google Scholar 

  34. R.K. Bhangale, N. Ganesan, Static analysis of simply supported functionally graded and layered magneto-electro-elastic plates. Int. J. Solids Struct. 43(10), 3230–3253 (2006)

    Article  Google Scholar 

  35. M. Vinyas, S.C. Kattimani, Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads. Compos. Struct. 163, 216–237 (2017)

    Article  Google Scholar 

  36. M. Vinyas, S.C. Kattimani, Static analysis of stepped functionally graded magneto-electro-elastic plates in thermal environment: a finite element study. Compos. Struct. 178, 63–86 (2017)

    Article  Google Scholar 

  37. M. Vinyas, S.C. Kattimani, Static behavior of thermally loaded multilayered Magneto-Electro-Elastic beam. Struct. Eng. Mech. 63(4), 481–495 (2017)

    Google Scholar 

  38. A. Kumaravel, N. Ganesan, R. Sethuraman, Steady-state analysis of a three-layered electro-magneto-elastic strip in a thermal environment. Smart Mater. Struct. 16(2), 282 (2007)

    Article  Google Scholar 

  39. A. Daga, N. Ganesan, K. Shankar, Studies on magnetoelectric effect for magneto-electro-elastic cylinder using finite element method. Multidiscip. Model. Mater. Struct. 2009, 145 (2009)

    Google Scholar 

  40. J. Aboudi, The electric, magnetic, and elastic fields in damaged thermo-electro-magneto-elastic composites created by heat flow. J. Intell. Mater. Syst. Struct. 29(8), 1670–1684 (2018)

    Article  Google Scholar 

  41. C.-P. Wu, S.-J. Chen, K.-H. Chiu, Three-dimensional static behavior of functionally graded magneto-electro-elastic plates using the modified Pagano method. Mech. Res. Commun. 37(1), 54–60 (2010)

    Article  Google Scholar 

  42. D.J. Huang, H.J. Ding, W.Q. Chen, Analytical solution for functionally graded magneto-electro-elastic plane beams. Int. J. Eng. Sci. 45(2–8), 467–485 (2007)

    Article  Google Scholar 

  43. Y. Wang, R. Xu, H. Ding, Axisymmetric bending of functionally graded circular magneto-electro-elastic plates. Eur. J. Mech. 30(6), 999–1011 (2011)

    Article  MathSciNet  Google Scholar 

  44. X.Y. Li, Y.H. Dong, C. Liu, Y. Liu, C.J. Wang, T.F. Shi, Axisymmetric thermo-magneto-electro-elastic field in a heterogeneous circular plate subjected to a uniform thermal load. Int. J. Mech. Sci. 88, 71–81 (2014)

    Article  Google Scholar 

  45. C.-P. Wu, Y.-H. Tsai, Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux. Int. J. Eng. Sci. 45(9), 744–769 (2007)

    Article  Google Scholar 

  46. Y.-H. Tsai, C.-P. Wu, Y.-S. Syu, Three-dimensional analysis of doubly curved functionally graded magneto-electro-elastic shells. Eur. J. Mech. 27(1), 79–105 (2008)

    Article  MathSciNet  Google Scholar 

  47. P. Kondaiah, K. Shankar, N. Ganesan, Pyroelectric and pyromagnetic effects on multiphase magneto–electro–elastic cylindrical shells for axisymmetric temperature. Smart Mater. Struct. 22(2), 25007 (2012)

    Article  Google Scholar 

  48. T. Loading, Static studies on piezoelectric/piezomagnetic composite structure under mechanical and thermal loading *1. Int. J. Eng. Sci. Res. Technol. 3, 2 (2014)

    Google Scholar 

  49. T.R. Tauchert, Cylindrical bending of hybrid laminates under thermo-electro-mechanical loading. J. Therm. Stress. 19(3), 287–296 (1996)

    Article  Google Scholar 

  50. T.R. Tauchert, F. Ashida, Application of the potential function method in piezothermoelasticity: solutions for composite circular plates. J. Therm. Stress. 22(4–5), 387–419 (1999)

    Google Scholar 

  51. H.S. Tzou, R. Ye, Piezothermoelasticity and precision control of piezoelectric systems: theory and finite element analysis. J. Vib. Acoust. 116(4), 489–495 (1994)

    Article  Google Scholar 

  52. M. Sunar, A.Z. Al-Garni, M.H. Ali, R. Kahraman, Finite element modeling of thermopiezomagnetic smart structures. AIAA J. 40(9), 1846–1851 (2002)

    Article  Google Scholar 

  53. Y. Ootao, Y. Tanigawa, Transient analysis of multilayered magneto-electro-thermoelastic strip due to nonuniform heat supply. Compos. Struct. 68(4), 471–480 (2005)

    Article  Google Scholar 

  54. M. Vinyas, S.C. Kattimani, Multiphysics response of magneto-electro-elastic beams in thermo-mechanical environment. Coupled Syst. Mech 6(3), 351–367 (2017)

    Google Scholar 

  55. M. Vinyas, S.C. Kattimani, Finite element evaluation of free vibration characteristics of magneto-electro-elastic rectangular plates in hygrothermal environment using higher-order shear deformation theory. Compos. Struct. 202, 1339 (2018)

    Article  Google Scholar 

  56. P. Kondaiah, K. Shankar, N. Ganesan, Pyroelectric and pyromagnetic effects on behavior of magneto-electro-elastic plate. Coupled Syst. Mech. 2(1), 1–22 (2013)

    Article  Google Scholar 

  57. P. Kondaiah, K. Shankar, N. Ganesan, Studies on magneto-electro-elastic cantilever beam under thermal environment. Coupled Syst. Mech. 1(2), 205–217 (2012)

    Article  Google Scholar 

  58. J. Kim, A. Baltazar, Pyroelectric and pyromagnetic coefficients of functionally graded multilayered multiferroic composites. Acta Mech. 223, 849 (2012)

    Article  MathSciNet  Google Scholar 

  59. J. Sladek, V. Sladek, S. Krahulec, C.S. Chen, D.L. Young, Analyses of circular magnetoelectroelastic plates with functionally graded material properties. Mech. Adv. Mater. Struct. 22(6), 479–489 (2015)

    Article  Google Scholar 

  60. M. Arefi, A complete set of equations for piezo-magnetoelastic analysis of a functionally graded thick shell of revolution. Lat. Am. J. Solids Struct. 11(11), 2073–2098 (2014)

    Article  MathSciNet  Google Scholar 

  61. M. Vinyas, S.C. Kattimani, Investigation of the effect of BaTiO 3 / CoFe 2 O 4 particle arrangement on the static response of magneto-electro-thermo-elastic plates Investigation of the e ff ect of BaTiO 3 / CoFe 2 O 4 particle arrangement on the static response of magneto-electro-t. Compos. Struct. 185(October), 51–64 (2017)

    Google Scholar 

  62. M. Vinyas, S.C. Kattimani, Static analysis of stepped functionally graded magneto-electro-elastic plates in thermal environment : a finite element study Static analysis of stepped functionally graded magneto-electro-elastic plates in thermal environment : a finite element study. Compos. Struct. 178, 63 (2017)

    Article  Google Scholar 

  63. V. Mahesh, P.J. Sagar, S. Kattimani, Influence of coupled fields on free vibration and static behavior of functionally graded magneto-electro-thermo-elastic plate. J. Intell. Mater. Syst. Struct. 178, 63–66 (2017)

    Google Scholar 

  64. M. Vinyas, S.C. Kattimani, M.A.R. Loja, M. Vishwas, “Effect of BaTiO 3 / CoFe 2 O 4 micro-topological textures on the coupled static behaviour of magneto-electro-thermo-elastic beams in different thermal environment Effect of BaTiO 3 / CoFe 2 O 4 micro-topological textures on the coupled static behaviour of. Mater. Res. Express 5, 12 (2018)

    Article  Google Scholar 

  65. M. Vinyas, S.C. Kattimani, Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads. Compos. Struct. 163, 216–237 (2016)

    Article  Google Scholar 

  66. V. Mahesh, S. Kattimani, Mechanical environment multiphysics response of magneto-electro-elastic beams in thermo-mechanical environment. Coupled Syst. Mech. 6(3), 351–368 (2017). https://doi.org/10.12989/csm.2017.6.3.351

    Article  Google Scholar 

  67. M.C. Kiran, S.C. Kattimani, M. Vinyas, Porosity influence on structural behaviour of skew functionally graded magneto-electro-elastic plate. Compos. Struct. 191, 36–77 (2018)

    Article  Google Scholar 

  68. T.M.B. Albarody, H.H. Al-Kayiem, Dynamic analysis of laminated composite thermo-magneto-electro-elastic shells. J. Mech. Sci. Technol. 28(12), 4877–4891 (2014)

    Article  Google Scholar 

  69. B. Biju, N. Ganesan, K. Shankar, Dynamic response of multiphase magnetoelectroelastic sensors using 3D magnetic vector potential approach. IEEE Sens. J. 11(9), 2169–2176 (2011)

    Article  Google Scholar 

  70. A. Daga, N. Ganesan, K. Shankar, Behaviour of magneto-electro-elastic sensors under transient mechanical loading. Sens. Actuat. A Phys. 150(1), 46–55 (2009)

    Article  Google Scholar 

  71. A. Daga, N. Ganesan, K. Shankar, Comparative studies of the transient response for PECP, MSCP, Barium Titanate, magneto-electro-elastic finite cylindrical shell under constant internal pressure using finite element method. Finite Elem. Anal. Des. 44(3), 89–104 (2008)

    Article  Google Scholar 

  72. B. Biju, N. Ganesan, K. Shankar, Transient dynamic behavior of two phase magneto-electro-elastic sensors bonded to elastic rectangular plates. Int. J. Smart Sens. Intell. Syst. 5, 3 (2012)

    Google Scholar 

  73. H.L. Dai, X. Wang, Magneto–thermo–electro–elastic transient response in a piezoelectric hollow cylinder subjected to complex loadings. Int. J. Solids Struct. 43(18–19), 5628–5646 (2006)

    Article  Google Scholar 

  74. P.-F. Hou, A.Y.T. Leung, The transient responses of magneto-electro-elastic hollow cylinders. Smart Mater. Struct. 13(4), 762 (2004)

    Article  Google Scholar 

  75. C.-P. Wu, Y.-C. Lu, A modified Pagano method for the 3D dynamic responses of functionally graded magneto-electro-elastic plates. Compos. Struct. 90(3), 363–372 (2009)

    Article  Google Scholar 

  76. S.S. Phoenix, S.K. Satsangi, B.N. Singh, Layer-wise modelling of magneto-electro-elastic plates. J. Sound Vib. 324(3–5), 798–815 (2009)

    Article  Google Scholar 

  77. Y. Ootao, M. Ishihara, Transient thermal stress problem of a functionally graded magneto-electro-thermoelastic hollow cylinder due to a uniform surface heating. J. Therm. Stress. 35(6), 517–533 (2012)

    Article  Google Scholar 

  78. T.M. Badri, H.H. Al-Kayiem, Analytical solution for simply supported and multilayered magneto-thermo-electro-elastic plates. Asian J. Sci. Res. 6(2), 236–244 (2013)

    Article  Google Scholar 

  79. A. Akbarzadeh, Z. Chen, Thermo-magneto-electro-elastic responses of rotating hollow cylinders. Mech. Adv. Mater. Struct. 21(1), 67–80 (2014)

    Article  Google Scholar 

  80. F. Ebrahimi, M.R. Barati, Dam** vibration analysis of smart piezoelectric polymeric nanoplates on viscoelastic substrate based on nonlocal strain gradient theory. Smart Mater. Struct. 26(6), 65018 (2017)

    Article  Google Scholar 

  81. A.M. Zenkour, M. Arefi, N.A. Alshehri, Size-dependent analysis of a sandwich curved nanobeam integrated with piezomagnetic face-sheets. Results Phys. 7, 2172–2182 (2017)

    Article  Google Scholar 

  82. M. Arefi, A.M. Zenkour, Transient sinusoidal shear deformation formulation of a size-dependent three-layer piezo-magnetic curved nanobeam. Acta Mech. 228(10), 3657–3674 (2017)

    Article  MathSciNet  Google Scholar 

  83. W. Wang, P. Li, F. **, Two-dimensional linear elasticity theory of magneto-electro-elastic plates considering surface and nonlocal effects for nanoscale device applications. Smart Mater. Struct. 25(9), 95026 (2016)

    Article  Google Scholar 

  84. M. Arefi, A.H. Soltan-Arani, Higher order shear deformation bending results of a magnetoelectrothermoelastic functionally graded nanobeam in thermal, mechanical, electrical, and magnetic environments. Mech. Based Des. Struct. Mach. 46(6), 669–692 (2018)

    Article  Google Scholar 

  85. M. Ghadiri, H. Safarpour, Free vibration analysis of embedded magneto-electro-thermo-elastic cylindrical nanoshell based on the modified couple stress theory. Appl. Phys. A 122(9), 833 (2016)

    Article  Google Scholar 

  86. J. Guo, J. Chen, E. Pan, Static deformation of anisotropic layered magnetoelectroelastic plates based on modified couple-stress theory. Compos. Part B Eng. 107, 84–96 (2016)

    Article  Google Scholar 

  87. D.J. Huang, H.J. Ding, W.Q. Chen, Static analysis of anisotropic functionally graded magneto-electro-elastic beams subjected to arbitrary loading. Eur. J. Mech. 29(3), 356–369 (2010)

    Article  Google Scholar 

  88. M. Arefi, E.M.R. Bidgoli, Electro-elastic displacement and stress analysis of the piezoelectric doubly curved shells resting on Winkler’s foundation subjected to applied voltage. Mech. Adv. Mater. Struct. 2018, 1–14 (2018)

    Google Scholar 

  89. M. Arefi, M. Mohammadi, S. Amir-Ahmadi, T. Rabczuk, FSDT electro-elastic analysis of FG-CNTRC cylindrical three-layered pressure vessels with piezoelectric face-sheets. Thin-Walled Struct. 144, 106320 (2019)

    Article  Google Scholar 

  90. M. Arefi, M. Mohammadi, T. Rabczuk, Effect of characteristics and distribution of porosity on electro-elastic analysis of laminated vessels with piezoelectric face-sheets based on higher-order modeling. Compos. Struct. 225, 111085 (2019)

    Article  Google Scholar 

  91. M. Mohammadi, M. Bamdad, K. Alambeigi, R. Dimitri, F. Tornabene, Electro-elastic response of cylindrical sandwich pressure vessels with porous core and piezoelectric face-sheets. Compos. Struct. 225, 111119 (2019)

    Article  Google Scholar 

  92. A.H. Akbarzadeh, M.H. Babaei, Z.T. Chen, The thermo-electromagnetoelastic behavior of a rotating functionally graded piezoelectric cylinder. Smart Mater. Struct. 20(6), 65008 (2011)

    Article  Google Scholar 

  93. A. Ghorbanpour-Arani, E. Haghparast, Z. Khoddami-Maraghi, S. Amir, Static stress analysis of carbon nano-tube reinforced composite (CNTRC) cylinder under non-axisymmetric thermo-mechanical loads and uniform electro-magnetic fields. Compos. Part B Eng. 68, 136–145 (2015)

    Article  Google Scholar 

  94. M. Dehghan, M.Z. Nejad, A. Moosaie, Thermo-electro-elastic analysis of functionally graded piezoelectric shells of revolution: governing equations and solutions for some simple cases. Int. J. Eng. Sci. 104, 34–61 (2016)

    Article  MathSciNet  Google Scholar 

  95. S.M. Mousavi, M. Jabbari, M.A. Kiani, Hollow piezoelectric cylinder under transient loads. ISME 18(2), 24 (2017)

    Google Scholar 

  96. M. Jabbari, M.A. Kiani, General solution for equation of transient heat conduction in functionally graded material hollow cylinder with piezoelectric internal and external layers. J. Press. Vessel. Technol. 139(5), 051206 (2017)

    Article  Google Scholar 

  97. M. Meshkini, K. Firoozbakhsh, M. Jabbari, A. SelkGhafari, Asymmetric mechanical and thermal stresses in 2D-FGPPMs hollow cylinder. J. Therm. Stress. 40(4), 448–469 (2017)

    Article  Google Scholar 

  98. A. Mehditabar, G.H. Rahimi, M.H. Tarahhomi, Thermo-elastic analysis of a functionally graded piezoelectric rotating hollow cylindrical shell subjected to dynamic loads. Mech. Adv. Mater. Struct. 25(12), 1068–1079 (2018)

    Article  Google Scholar 

  99. M.A.K.S.M. Mousavi, M. Jabbari, One-dimensional transient thermal and mechanical stresses in fgm hollow cylinder with piezoelectric layers. J. Solid Mech. 10(4), 734–752 (2018)

    Google Scholar 

  100. M. Parhizkar-Yaghoobi, I. Ghaffari, M. Ghannad, Stress and active control analysis of functionally graded piezoelectric material cylinder and disk under electro-thermo-mechanical loading. J. Intell. Mater. Syst. Struct. 29(5), 924–937 (2018)

    Article  Google Scholar 

  101. M. Arefi, M.T. Ardestani, The effect of temperature dependency on the thermo-electro- elastic analysis of functionally graded piezoelectric spherical shell. Mech. Adv. Compos. Struct. 6, 1–8 (2019)

    Google Scholar 

  102. H. Babaei, M.R. Eslami, Thermally induced large deflection of FGM shallow micro-arches with integrated surface piezoelectric layers based on modified couple stress theory. Acta Mech. 2019, 1950088 (2019)

    MathSciNet  Google Scholar 

  103. M. Arefi, T. Rabczuk, A nonlocal higher-order shear deformation theory for electro-elastic analysis of a piezoelectric doubly curved nanoshell. Compos. Part B Eng. 168(April), 496–510 (2019)

    Article  Google Scholar 

  104. M. Arefi, Size-dependent bending behavior of three-layered doubly curved shells: Modified couple stress formulation. J. Sandw. Struct. Mater. 1–40, 2018 (2018)

    Google Scholar 

  105. M. Mohammadi, M. Arefi, S. Amirahmadi, Two-dimensional electro-elastic analysis of FG-CNTRC cylindrical laminated pressure vessels with piezoelectric layers based on third-order shear deformation theory. J. Press. Vessel. Technol. 2019, 145 (2019)

    Google Scholar 

  106. A. Ghorbanpour-Arani, E. Haghparast, Z. Khoddami-Maraghi, S. Amir, Static stress analysis of carbon nanotube-reinforced composite (CNTRC) cylinder under non-axisymmetric thermo-mechanical loads and uniform electromagnetic fields. Compos. Part B Eng. 68, 136–145 (2015)

    Article  Google Scholar 

  107. K. Malli, K. Rao, N.J. Aneela, K.Y. Sri, K.N. Prasanna, N. Sahithi, L. Likhitha, Design of clocked jk flip flop using air hole structured photonic crystal. J. VLSI Circ. Syst. 3(2), 11–20 (2021). https://doi.org/10.31838/jvcs/03.02.02

    Article  Google Scholar 

  108. P.R. Ambavaram, M. Pachiyannan, Analysis of dual layer patch antenna for WLAN applications. Natl. J. Antenn. Propag. 3(1), 11–15 (2021). https://doi.org/10.31838/NJAP/03.01.0

    Article  Google Scholar 

  109. A.B.W. Putra, Computer technology simulation towards power generation potential from coproduced fluids in South Lokichar Oil Fields. Int. J. Commun. Comput. Technol. 8(2), 9–12 (2020). https://doi.org/10.31838/ijccts/08.02.03

    Article  MathSciNet  Google Scholar 

  110. S.G. Al-shawi, N. Andreevna-Alekhina, S. Aravindhan, L. Thangavelu, A. Elena, N. Viktorovna Kartamysheva, R. Rafkatovna-Zakieva, Synthesis of NiO nanoparticles and sulfur, and nitrogen co doped-graphene quantum dots/nio nanocomposites for antibacterial application. J. Nanostruct. 11(1), 181–188 (2021). https://doi.org/10.22052/JNS.2021.01.019

    Article  Google Scholar 

  111. W.J. Pranoto, S.G. Al-Shawi, P. Chetthamrongchai, T.C. Chen, E. Petukhova, N. Nikolaeva, S. Aravindhan et al., Employing artificial neural networks and fluorescence spectrum for food vegetable oils identification. Food Sci. Technol. 2021, 145 (2021)

    Google Scholar 

  112. Y.R. Bayrami, S.N. Dudran, Effect of using anti-strip** on fracture behavior of asphalt mixtures using linear elastic fracture mechanic (LEFM) technic. J. Res. Sci. Eng. Technol. 7(02), 1–5 (2019)

    Article  Google Scholar 

  113. V. Aleksandr, G. Roman, R. Rodion, L. Artem, M. Pavel, Determining uniaxial compressive strength and elastic modulus of rock using schmidt hammer (case study of Iran and Turkey). J. Res. Sci. Eng. Technol. 6(02), 31–34 (2018)

    Google Scholar 

  114. S. Patil, A. Bhosale, V. Dhepe, D. Lengare, R. Kakde, Impact energy absorption capability of polygonal cross-section thin-walled beams under lateral impact. Int. J. Innov. Res. Sci. Stud. 4(4), 205–214 (2021). https://doi.org/10.53894/ijirss.v4i4.96

    Article  Google Scholar 

  115. X. Liu, G. Zhang, J. Li, G. Shi, M. Zhou, B. Huang, W. Yang, Deep learning for feynman’s path integral in strong-field time-dependent dynamics. Phys. Rev. Lett. 124(11), 113202 (2020). https://doi.org/10.1103/PhysRevLett.124.113202

    Article  Google Scholar 

  116. W. Yang, Y. Lin, X. Chen, Y. Xu, X. Song, Wave mixing and high-harmonic generation enhancement by a two-color field driven dielectric metasurface. Chin. Opt. Lett. 19(12), 1232 (2021). https://doi.org/10.3788/COL202119.123202

    Article  Google Scholar 

  117. H. Wu, X. Hu, X. Li, M. Sheng, X. Sheng, X. Lu, J. Qu et al., Large-scale fabrication of flexible EPDM/MXene/PW phase change composites with excellent light-to-thermal conversion efficiency via water-assisted melt blending. Compos. Part A Appl. Sci. Manuf. 152, 106713 (2022). https://doi.org/10.1016/j.compositesa.2021.106713

    Article  Google Scholar 

  118. J. Shi, Y. Zhao, J. He, T. Li, F. Zhu, T. Wenchao, X. Liu, Deferred polarization saturation boosting superior energy-storage efficiency and density simultaneously under moderate electric field in relaxor ferroelectrics. ACS Appl. Energy Mater. (2022). https://doi.org/10.1021/acsaem.1c04017

    Article  Google Scholar 

  119. J. He, X. Liu, Y. Zhao, H. Du, T. Zhang, J. Shi et al., Dielectric stability and energy-storage performance of BNT-based relaxor ferroelectrics through Nb5+ and its excess modification. ACS Appl. Electron. Mater. (2022). https://doi.org/10.1021/acsaelm.1c01129

    Article  Google Scholar 

  120. Y. Peng, Z. Xu, M. Wang, Z. Li, J. Peng, J. Luo, Z. Yang et al., Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators. Renew. Energy 172, 551–563 (2021). https://doi.org/10.1016/j.renene.2021.03.064

    Article  Google Scholar 

  121. Z. Li, Y. Liu, P. Yin, Y. Peng, J. Luo, S. **e, H. Pu et al., Constituting abrupt magnetic flux density change for power density improvement in electromagnetic energy harvesting. Int. J. Mech. Sci. 198, 106363 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106363

    Article  Google Scholar 

  122. B. Bai, Q. Nie, Y. Zhang, X. Wang, W. Hu, Cotransport of heavy metals and SiO2 particles at different temperatures by seepage. J. Hydrol. (Amsterd.) 597, 125771 (2021). https://doi.org/10.1016/j.jhydrol.2020.125771

    Article  Google Scholar 

  123. B. Bai, Q. Nie, H. Wu, J. Hou, The attachment-detachment mechanism of ionic/nanoscale/microscale substances on quartz sand in water. Powder Technol. 394, 1158–1168 (2021). https://doi.org/10.1016/j.powtec.2021.09.051

    Article  Google Scholar 

  124. Y. Xu, H. Zhang, F. Yang, L. Tong, Y. Yang, D. Yan, Y. Wu et al., Experimental study on small power generation energy storage device based on pneumatic motor and compressed air. Energy Convers. Manage. 234, 113949 (2021). https://doi.org/10.1016/j.enconman.2021.113949

    Article  Google Scholar 

  125. T. Li, M. Sun, S. Wu, State-of-the-art review of electrospun gelatin-based nanofiber dressings for wound healing applications. Nanomaterials 12(5), 784 (2022). https://doi.org/10.3390/nano12050784

    Article  Google Scholar 

  126. T. Li, W. Yin, S. Gao, Y. Sun, P. Xu, S. Wu, G. Wei et al., The combination of two-dimensional nanomaterials with metal oxide nanoparticles for gas sensors: a review. Nanomaterials 12, 6 (2022). https://doi.org/10.3390/nano12060982

    Article  Google Scholar 

  127. H. Li, P. Xu, D. Liu, J. He, H. Zu, J. Song, F. Wang et al., Low-voltage and fast-response SnO2 nanotubes/perovskite heterostructure photodetector. Nanotechnology 32(37), 375202 (2021). https://doi.org/10.1088/1361-6528/ac05e7

    Article  Google Scholar 

  128. T. Zhou, Y. Zhao, Z. Rao, Fundamental and estimation of thermal contact resistance between polymer matrix composites: a review. Int. J. Heat Mass Transfer 2022, 189 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2022.122701

    Article  Google Scholar 

  129. C. Lu, R. Zhu, F. Yu, X. Jiang, Z. Liu, L. Dong, Z. Ou et al., Gear rotational speed sensor based on FeCoSiB/Pb(Zr, Ti)O3 magnetoelectric composite. Meas. J. Int. Meas. Confed. 168, 108409 (2021). https://doi.org/10.1016/j.measurement.2020.108409

    Article  Google Scholar 

  130. H. Zhou, C. Xu, C. Lu, X. Jiang, Z. Zhang, J. Wang, L. Wang et al., Investigation of transient magnetoelectric response of magnetostrictive/piezoelectric composite applicable for lightning current sensing. Sens. Actuat. A Phys. 329, 112789 (2021). https://doi.org/10.1016/j.sna.2021.112789

    Article  Google Scholar 

  131. Y. Wu, Y. Zhao, X. Han, G. Jiang, J. Shi, P. Liu, Y. Yamada et al., Ultra-fast growth of cuprate superconducting films: dual-phase liquid assisted epitaxy and strong flux pinning. Mater. Today Phys. 18, 100400 (2021). https://doi.org/10.1016/j.mtphys.2021.100400

    Article  Google Scholar 

  132. J. **e, W. Hao, F. Wang, Parametric study on interfacial crack propagation in solid oxide fuel cell based on electrode material. Int. J. Hydrogen Energy 47(12), 7975–7989 (2022). https://doi.org/10.1016/j.ijhydene.2021.12.153

    Article  Google Scholar 

  133. W. Hao, J. **e, Reducing diffusion-induced stress of bilayer electrode system by introducing pre-strain in lithium-ion battery. J. Electrochem. Energy Convers. Storage 18, 2 (2021). https://doi.org/10.1115/1.4049238

    Article  Google Scholar 

  134. L. Guo, C. Ye, Y. Ding, P. Wang, Allocation of centrally switched fault current limiters enabled by 5G in transmission system. IEEE Trans. Power Deliv. 36(5), 3231–3241 (2021). https://doi.org/10.1109/TPWRD.2020.3037193

    Article  Google Scholar 

  135. C. Guo, C. Ye, Y. Ding, P. Wang, A multi-state model for transmission system resilience enhancement against short-circuit faults caused by extreme weather events. IEEE Trans. Power Deliv. 36(4), 2374–2385 (2021). https://doi.org/10.1109/TPWRD.2020.3043938

    Article  Google Scholar 

  136. J. Liu, D. Fang, X. Liu, A shear horizontal surface wave in magnetoelectric materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(7), 1287–1289 (2007)

    Article  Google Scholar 

  137. A. Melkumyan, Twelve shear surface waves guided by clamped/free boundaries in magneto-electro-elastic materials. Int. J. Solids Struct. 44(10), 3594–3599 (2007)

    Article  Google Scholar 

  138. D. Piliposyan, Shear surface waves at the interface of two magneto-electro-elastic media. Multidiscipl. Model. Mater. Struct. 8(3), 417–426 (2012)

    Article  Google Scholar 

  139. J.X. Liu, D.N. Fang, W.Y. Wei, X.F. Zhao, Love waves in layered piezoelectric/piezomagnetic structures. J. Sound Vib. 315(1–2), 146–156 (2008)

    Article  Google Scholar 

  140. J.L. Bleustein, A new surface wave in piezoelectric materials. Appl. Phys. Lett. 13(12), 412–413 (1968)

    Article  Google Scholar 

  141. Y.V. Gulyaev, Electroacoustic surface waves in solids. Soviet Phys. JETP Lett. 9, 37–38 (1969)

    Google Scholar 

  142. E. Dieulesaint, D. Royer, Elastic Waves in Solids: Applications to Signal Processing (Springer, Berlin, 1980)

    Google Scholar 

  143. F. Mehralian, Y.T. Beni, R. Ansari, Size dependent buckling analysis of functionally graded piezoelectric cylindrical nanoshell. Compos. Struct. 152, 45–61 (2016)

    Article  Google Scholar 

  144. Z. Yan, L. Jiang, Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints. Proc. R. Soc. A: Math. Phys. Eng. Sci. 468(2147), 3458–3475 (2012)

    Article  MathSciNet  Google Scholar 

  145. A.H. Sofiyev, N. Kuruoglu, Torsional vibration and buckling of the cylindrical shell with functionally graded coatings surrounded by an elastic medium. Compos. B Eng. 45(1), 1133–1142 (2013)

    Article  Google Scholar 

  146. X.J. Xu, J.M. Meng, A size-dependent elastic theory for magneto-electro-elastic materials. Eur. J. Mech.-A/Solids 86, 104198 (2021)

    Article  MathSciNet  Google Scholar 

  147. M. Vinyas, On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT. Compos. Struct. 240, 112044 (2020)

    Article  Google Scholar 

  148. M. Vinyas, A higher-order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods. Compos. B Eng. 158, 286–301 (2019)

    Article  Google Scholar 

  149. M. Vinyas, Computational analysis of smart magneto-electro-elastic materials and structures: review and classification. Arch. Comput. Methods Eng. 28(3), 1205–1248 (2021)

    Article  MathSciNet  Google Scholar 

  150. M. Vinyas, Vibration control of skew magneto-electro-elastic plates using active constrained layer dam**. Compos. Struct. 208, 600–617 (2019)

    Article  Google Scholar 

  151. N.D. Dat, T.Q. Quan, V. Mahesh, N.D. Duc, Analytical solutions for nonlinear magneto-electro-elastic vibration of smart sandwich plate with carbon nanotube reinforced nanocomposite core in hygrothermal environment. Int. J. Mech. Sci. 186, 105906 (2020)

    Article  Google Scholar 

  152. M. Vinyas, K.K. Sunny, D. Harursampath, T. Nguyen-Thoi, M.A.R. Loja, Influence of interphase on the multi-physics coupled frequency of three-phase smart magneto-electro-elastic composite plates. Compos. Struct. 226, 111254 (2019)

    Article  Google Scholar 

  153. V. Mahesh, D. Harursampath, Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM. Eng. Comput. 38(2), 1029–1051 (2022)

    Article  Google Scholar 

  154. M. Vinyas, D.A. Harursampath, S.C. Kattimani, On vibration analysis of functionally graded carbon nanotube reinforced magneto-electro-elastic plates with different electro-magnetic conditions using higher order finite element methods. Defence Technol. 17(1), 287–303 (2021)

    Article  Google Scholar 

  155. M. Vinyas, A.S. Sandeep, T. Nguyen-Thoi, F. Ebrahimi, D.N. Duc, A finite element–based assessment of free vibration behaviour of circular and annular magneto-electro-elastic plates using higher order shear deformation theory. J. Intell. Mater. Syst. Struct. 30(16), 2478–2501 (2019)

    Article  Google Scholar 

  156. M. Vinyas, Interphase effect on the controlled frequency response of three-phase smart magneto-electro-elastic plates embedded with active constrained layer dam**: FE study. Mater. Res. Express 6(12), 125707 (2020)

    Article  Google Scholar 

  157. M. Vinyas, S.C. Kattimani, S. Joladarashi, Hygrothermal coupling analysis of magneto-electroelastic beams using finite element methods. J. Therm. Stresses 41(8), 1063–1079 (2018)

    Article  Google Scholar 

  158. M. Vinyas, D. Harursampath, Nonlinear vibrations of magneto-electro-elastic doubly curved shells reinforced with carbon nanotubes. Compos. Struct. 253, 112749 (2020)

    Article  Google Scholar 

  159. M. Vinyas, S.C. Kattimani, M.A.R. Loja, M. Vishwas, Effect of BaTiO3/CoFe2O4 micro-topological textures on the coupled static behaviour of magneto-electro-thermo-elastic beams in different thermal environment. Mater. Res. Express 5(12), 125702 (2018)

    Article  Google Scholar 

  160. V. Mahesh, S. Kattimani, Finite element simulation of controlled frequency response of skew multiphase magneto-electro-elastic plates. J. Intell. Mater. Syst. Struct. 30(12), 1757–1771 (2019)

    Article  Google Scholar 

  161. V. Mahesh, D. Harursampath, Nonlinear deflection analysis of CNT/magneto-electro-elastic smart shells under multi-physics loading. Mech. Adv. Mater. Struct. 29(7), 1047–1071 (2022)

    Article  Google Scholar 

  162. V. Mahesh, Porosity effect on the nonlinear deflection of functionally graded magneto-electro-elastic smart shells under combined loading. Mech. Adv. Mater. Struct. 29(19), 2707–2725 (2022)

    Article  Google Scholar 

  163. M. Vinyas, D. Harursampath, T.N. Thoi, A higher order coupled frequency characteristics study of smart magneto-electro-elastic composite plates with cut-outs using finite element methods. Defence Technol. 17(1), 100–118 (2021)

    Article  Google Scholar 

  164. V. Mahesh, Nonlinear deflection of carbon nanotube reinforced multiphase magneto-electro-elastic plates in thermal environment considering pyrocoupling effects. Math. Methods Appl. Sci. 2020, 145 (2020)

    Google Scholar 

  165. V. Mahesh, Nonlinear pyrocoupled deflection of viscoelastic sandwich shell with CNT reinforced magneto-electro-elastic facing subjected to electromagnetic loads in thermal environment. Eur. Phys. J. Plus 136(8), 796 (2021)

    Article  Google Scholar 

  166. V. Mahesh, Active control of nonlinear coupled transient vibrations of multifunctional sandwich plates with agglomerated FG-CNTs core/magneto-electro-elastic facesheets. Thin-Walled Struct. 179, 109547 (2022)

    Article  Google Scholar 

  167. V. Mahesh, D. Harursampath, Large deflection analysis of functionally graded magneto-electro-elastic porous flat panels. Eng. Comput. 38(Suppl 2), 1615–1634 (2022)

    Article  Google Scholar 

  168. V. Mahesh, Nonlinear dam** of auxetic sandwich plates with functionally graded magneto-electro-elastic facings under multiphysics loads and electromagnetic circuits. Compos. Struct. 290, 115523 (2022)

    Article  Google Scholar 

  169. V. Mahesh, Porosity effect on the energy harvesting behaviour of functionally graded magneto-electro-elastic/fibre-reinforced composite beam. Eur. Phys. J. Plus 137(1), 48 (2021)

    Article  Google Scholar 

  170. M. Vinyas, D. Harursampath, Computational evaluation of electro-magnetic circuits’ effect on the coupled response of multifunctional magneto-electro-elastic composites plates exposed to hygrothermal fields. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 235(15), 2832–2850 (2021)

    Article  Google Scholar 

  171. V. Mahesh, Effect of carbon nanotube-reinforced magneto-electro-elastic facings on the pyrocoupled nonlinear deflection of viscoelastic sandwich skew plates in thermal environment. Proc. Inst. Mech. Eng. Part L: J. Mater. Design Appl. 236(1), 200–221 (2022)

    Google Scholar 

  172. V. Mahesh, A.S. Mangalasseri, Agglomeration effects of CNTs on the energy harvesting performance of multifield interactive magneto-electro-elastic/nanocomposite unimorph smart beam. Mech. Based Des. Struct. Mach. 2022, 1–27 (2022)

    Google Scholar 

  173. A. Siddharth Mangalasseri, V. Mahesh, V. Mahesh, S.A. Ponnusami, D. Harursampath, Investigation on the interphase effects on the energy harvesting characteristics of three phase magneto-electro-elastic cantilever beam. Mech. Adv. Mater. Struct. 30(13), 2735–2747 (2023)

    Article  Google Scholar 

  174. V. Mahesh, Nonlinear damped transient vibrations of carbon nanotube-reinforced magneto-electro-elastic shells with different electromagnetic circuits. J. Vibr. Eng. Technol. 2022, 1–24 (2022)

    Google Scholar 

  175. V. Mahesh, Nonlinear pyrocoupled dynamic response of functionally graded magnetoelectroelastic plates under blast loading in thermal environment. Mech. Based Des. Struct. Mach. 51(11), 6471–6496 (2023)

    Article  Google Scholar 

  176. V. Mahesh, Artificial neural network (ANN) based investigation on the static behaviour of piezo-magneto-thermo-elastic nanocomposite sandwich plate with CNT agglomeration and porosity. Int. J. Non-Linear Mech. 153, 104406 (2023)

    Article  Google Scholar 

  177. V. Mahesh, S.A. Ponnusami, Nonlinear damped transient response of sandwich auxetic plates with porous magneto-electro-elastic facesheets. Eur. Phys. J. Plus 137(5), 1–21 (2022)

    Article  Google Scholar 

  178. V. Mahesh, V. Mahesh, S.A. Ponnusami, FEM-ANN approach to predict nonlinear pyro-coupled deflection of sandwich plates with agglomerated porous nanocomposite core and piezo-magneto-elastic facings in thermal environment. Mech. Adv. Mater. Struct. 2023, 1–24 (2023)

    Google Scholar 

  179. K. Chadha, V. Mahesh, A.S. Mangalasseri, V. Mahesh, On analysing vibration energy harvester with auxetic core and magneto-electro-elastic facings. Thin-Walled Struct. 184, 110533 (2023)

    Article  Google Scholar 

  180. V. Mahesh, V. Mahesh, D. Harursampath, A.E. Abouelregal, Simulation-based assessment of coupled frequency response of magneto-electro-elastic auxetic multifunctional structures subjected to various electromagnetic circuits. Proc. Inst. Mech. Eng. Part L: J. Mater. Design Appl. 236(11), 2281–2296 (2022)

    Google Scholar 

  181. M.E. Aldokheily, A.H. Mekky, S.A. Rahem, Preparation of polymer nanoparticles and do** by some schiff base compounds by using microemulsion systems. Chem. Methodol. 6(6), 494–500 (2022). https://doi.org/10.22034/chemm.2022.334829.1459

    Article  Google Scholar 

  182. P. Shirzadi, M.E. Masomi, A.H. Nazemi, Fuel cell simulation using aspen plus simulation software. Chem. Methodol. 6(3), 197–211 (2022). https://doi.org/10.22034/chemm.2022.317992.1403

    Article  Google Scholar 

  183. R. Das, D. Mukherjee, S. Reja, K. Sarkar, A. Kejriwal, Copper based N, N-dimethyl-N-(1-pyridinylmethylidene) propane-1,3-diamine compound: synthesis, characterization, and its application toward biocidal activity. J. Appl. Organometal. Chem. 3(2), 73–85 (2023). https://doi.org/10.22034/jaoc.2023.382873.1067

    Article  Google Scholar 

  184. M. Khalil, S. Noor, Z. Ahmad, F. Ahmad, Fate of Pakistani exported mango due to its toxicity (heavy metals, pesticides, and other toxic organic components). J. Appl. Organometal. Chem. 3(2), 86–107 (2023). https://doi.org/10.22034/jaoc.2023.392989.1077

    Article  Google Scholar 

  185. U. Bello, C.M. Agu, D.A. Ajiya, A.A. Mahmoud, L. Udopia, N.M. Lawal, A.A. Abubakar, M. Muhammad, Biodiesel, in a quest for sustainable renewable energy: a review on its potentials and production strategies. J. Chem. Rev. 4(3), 272–287 (2022). https://doi.org/10.22034/jcr.2022.343497.1175

    Article  Google Scholar 

  186. M. Anthony, O. Ige, R. Usman, O. Okara, A. Muhammad, A. Taher, Using the coupled-channeled optical model code to investigate the nuclear property of protactinium-233 for reactor fuel application. J. Eng. Ind. Res. 4(2), 128–134 (2023). https://doi.org/10.48309/JEIRES.2023.2.6

    Article  Google Scholar 

  187. S. Mohammadi, Algorithm based on trap packet to detect black hole attack in ad-hoc networks using common methods. J. Eng. Ind. Res. 4(1), 31–43 (2023). https://doi.org/10.48309/jeires.2023.1.4

    Article  Google Scholar 

  188. P. Shirzadi, Optimization and simulation of process unit in the chemical industry. J. Eng. Ind. Res. 3(3), 153–160 (2022). https://doi.org/10.22034/jeires.2022.3.6

    Article  MathSciNet  Google Scholar 

  189. E. Amouzad Mahdiraji, Microgrid control to ensure stability and increase flexibility in storage applications. J. Eng. Ind. Res. 3(2), 69–76 (2022). https://doi.org/10.22034/jeires.2022.1.8

    Article  Google Scholar 

  190. A. Sadon, S. Hattab Mutlag, R. Jameel Mohaisen, In silico study of chalcones having novel zinc binding group (3-propoxy-1, 2-diol) for histone deacetylase inhibitory effect. J. Med. Pharmaceut. Chem. Res. 5(9), 812–831 (2023)

    Google Scholar 

  191. A. Rahem, S.E. Aldokheily, A. Mekky, Evaluation of fabricated IR absorbing films of polymer nanocapsules. J. Med. Pharmaceut. Chem. Res. 4(12), 1228–1240 (2022)

    Google Scholar 

  192. R. Ismael, Y. Mustafa, H. Al-Qazaz, Cancer-curative potential of novel coumarins from watermelon princess: a scenario of their isolation and activity. J. Med. Pharmaceut. Chem. Res. 4(7), 657–672 (2022)

    Google Scholar 

  193. S. Mehmandoust Tabkhi, S.M. Tabaeian, Investigating the feasibility of using nanomaterials in electricity and energy systems for urban use. J. Med. Pharmaceut. Chem. Res. 4(4), 303–318 (2022)

    Google Scholar 

  194. E. Ezzatzadeh, Chemoselective oxidation of sulfides to sulfoxides using a novel Zn-DABCO functionalized Fe3O4 MNPs as highly effective nanomagnetic catalyst. J. Med. Nanomater. Chem. 5(3), 213–224 (2023). https://doi.org/10.48309/JMNC.2023.3.4

    Article  Google Scholar 

  195. F. Ali, S. Fazal, N. Iqbal, A. Zia, F. Ahmad, PANI-based nanocomposites for the removal of dye from wastewater. J. Med. Nanomater. Chem. 5(2), 106–124 (2023). https://doi.org/10.48309/jmnc.2023.2.1

    Article  Google Scholar 

  196. O. Ifeanyi, J. Nnaji, Electricity generator emission and its impacts on air quality to the environment. Asian J. Green Chem. 7(2), 132–139 (2023). https://doi.org/10.22034/ajgc.2023.389544.1378

    Article  Google Scholar 

  197. A. Mohammadkhani, F. Mohammadkhani, N. Farhadyar, M.S. Sadjadi, Novel nanocomposite zinc phosphate/polyvinyl alcohol/carboxymethyl cellulose: synthesis, characterization and investigation of antibacterial and anticorrosive properties. Case Stud. Chem. Env. Eng. 2023, 100591 (2023)

    Google Scholar 

  198. L.A. Younus, Z.H. Mahmoud, A.A. Hamza, K.M.A. Alaziz, M.L. Ali, Y. Yasin, E. Kianfar et al., Photodynamic therapy in cancer treatment: properties and applications in nanoparticles. Braz. J. Biol. 84, e268892 (2023)

    Article  Google Scholar 

  199. U. Abdul-Reda Hussein, Z.H. Mahmoud, K.M. Abd Alaziz, M.L. Alid, Y. Yasin, F.K. Ali, E. Kianfar et al., Antimicrobial finishing of textiles using nanomaterials. Braz. J. Biol. 84, e264947 (2023)

    Article  Google Scholar 

  200. E. Kianfar, Comparative studies of nanosheet-based supercapacitors: a review of advances in electrodes materials. Case Stud. Chem. Env. Eng. 2023, 100584 (2023)

    Google Scholar 

  201. G.R.L. Al-Awsi, A.A. Alameri, A.M.B. Al-dhalimy, G.A. Gabr, E. Kianfar, Application of nano-antibiotics in the diagnosis and treatment of infectious diseases. Braz. J. Biol. 2023, 84 (2023)

    Google Scholar 

  202. H.N.K. Al-Salman, C.Y. Hsu, Z.N. Jawad, Z.H. Mahmoud, F. Mohammed, A. Saud, E. Kianfar et al., Graphene oxide-based biosensors for detection of lung cancer: A review. Results Chem. 2023, 101300 (2023)

    Google Scholar 

  203. A.M. Rheima, Z. Sabri-Abbas, M.M. Kadhim, S.H. Mohammed, D.Y. Alhameedi, F.A. Rasen, E. Kianfar et al., Aluminum oxide nano porous: Synthesis, properties, and applications. Case Stud. Chem. Env. Eng. 8, 100428 (2023)

    Article  Google Scholar 

  204. H.N.K. Al-Salman, M. Sabbar-Falih, H.B. Deab, U.S. Altimari, H.G. Shakier, A.H. Dawood, E. Kianfar et al., A study in analytical chemistry of adsorption of heavy metal ions using chitosan/graphene nanocomposites. Case Stud. Chem. Env. Eng. 8, 100426 (2023)

    Article  Google Scholar 

  205. M. Fattahi, C.Y. Hsu, A.O. Ali, Z.H. Mahmoud, N.P. Dang, E. Kianfar, Severe plastic deformation: nanostructured materials, metal-based and polymer-based nanocomposites: a review. Heliyon. 9, 12 (2023)

    Article  Google Scholar 

  206. E. Kianfar, A review of recent advances in carbon dioxide absorption–strip** by employing a gas–liquid hollow fiber polymeric membrane contactor. Polym. Bull. 80(11), 11469–11505 (2023)

    Article  Google Scholar 

  207. C.Y. Hsu, Z.H. Mahmoud, S. Abdullaev, B.A. Mohammed, U.S. Altimari, M.L. Shaghnab, G.F. Smaisim, Nanocomposites based on Resole/graphene/carbon fibers: a review study. Case Stud. Chem. Env. Eng. 2023, 100535 (2023)

    Article  Google Scholar 

  208. E. Darabi, H. Nazarpour-Fard, E. Kianfar, Fast NO2 gas pollutant removal using CNTs/TiO2/CuO/zeolite nanocomposites at the room temperature. Case Stud. Chem. Env. Eng. 8, 100527 (2023)

    Article  Google Scholar 

  209. C.Y. Hsu, A.M. Rheima, Z. Sabri-Abbas, M.U. Faryad, M.M. Kadhim, U.S. Altimari, E. Kianfar et al., Nanowires properties and applications: a review study. South Afr. J. Chem. Eng. 46, 311 (2023)

    Google Scholar 

  210. C.Y. Hsu, A.M. Rheima, M.M. Kadhim, N.N. Ahmed, S.H. Mohammed, F.H. Abbas, E. Kianfar et al., An overview of nanoparticles in drug delivery: properties and applications. South Afr. J. Chem. Eng. 46, 233 (2023)

    Article  Google Scholar 

  211. C.Y. Hsu, A.M. Rheima, M.S. Mohammed, M.M. Kadhim, S.H. Mohammed, F.H. Abbas, kianfar, E. et al., Application of carbon nanotubes and graphene-based nanoadsorbents in water treatment. BioNanoScience 2023, 1–19 (2023)

    Google Scholar 

  212. R. Alabada, M.M. Kadhim, Z. Sabri-Abbas, A.M. Rheima, U.S. Altimari, A.H. Dawood, E. Kianfar et al., Investigation of effective parameters in the production of alumina gel through the sol-gel method. Case Stud. Chem. Env. Eng. 2023, 100405 (2023)

    Article  Google Scholar 

  213. G.F. Smaisim, K.J. Mohammed, S.K. Hadrawi, H. Koten, E. Kianfar, Properties and application of nanostructure in liquid crystals. BioNanoScience 13(2), 819–839 (2023)

    Article  Google Scholar 

  214. K.J. Mohammed, S.K. Hadrawi, E. Kianfar, Synthesis and modification of nanoparticles with ionic liquids: a review. BioNanoScience 13(2), 760–783 (2023)

    Article  Google Scholar 

  215. Z. Sabri-Abbas, M.M. Kadhim, A. Mahdi-Rheima, A.D. Jawad-al-bayati, Z. Talib-Abed, F.M. Dashoor-Al-Jaafari, E. Kianfar et al., Preparing hybrid nanocomposites on the basis of resole/graphene/carbon fibers for investigating mechanical and thermal properties. BioNanoScience 2023, 1–29 (2023)

    Google Scholar 

  216. Z.H. Mahmoud, H.A. Salman, H.H. Hussein, A.H. Adhab, K. Al-Majdi, T. Rasheed, E. Kianfar et al., Organic chemical Nano sensors: synthesis, properties, and applications. Braz. J. Biol. 84, e268893 (2023)

    Article  Google Scholar 

  217. A.K. Alkhawaldeh et al., Nanomaterials as transmitters of non-viral gene vectors: A review. Case Stud. Chem. Env. Eng. 2023, 100372 (2023)

    Article  Google Scholar 

  218. G.F. Smaisim, A.M. Abed, H. Al-Madhhachi, S.K. Hadrawi, H.M.M. Al-Khateeb, E. Kianfar, Graphene-based important carbon structures and nanomaterials for energy storage applications as chemical capacitors and supercapacitor electrodes: A review. BioNanoScience 13(1), 219–248 (2023)

    Article  Google Scholar 

  219. I.M.R. Fattah, Z.A. Farhan, K.J. Kontoleon, E. Kianfar, S.K. Hadrawi, Hollow fiber membrane contactor based carbon dioxide absorption−strip**: a review. Macromol. Res. 2023, 1–27 (2023)

    Google Scholar 

  220. N. Sabah-Ahmed, C.Y. Hsu, Z.H. Mahmoud, H. Sayadi, A graphene oxide/polyaniline nanocomposite biosensor: synthesis, characterization, and electrochemical detection of bilirubin. RSC Adv. 13(51), 36280–36292 (2023)

    Article  Google Scholar 

  221. M.M. Kadhim, A.M. Rheima, Z.S. Abbas, H.H. Jlood, S.K. Hachim, W.R. Kadhum, Evaluation of a biosensor-based graphene oxide-DNA nanohybrid for lung cancer. RSC Adv. 13(4), 2487–2500 (2023)

    Article  Google Scholar 

  222. E. Kianfar, H. Sayadi, Recent advances in properties and applications of nanoporous materials and porous carbons. Carbon Lett. 32(7), 1645–1669 (2022)

    Article  Google Scholar 

  223. L.A. Isola, T.C. Chen, M. Elveny, A.F. Alkaim, L. Thangavelu, E. Kianfar, Application of micro and porous materials as nano-reactors. Rev. Inorg. Chem. 42(2), 121–136 (2022)

    Article  Google Scholar 

  224. S.A. Jasim, H.H. Kzar, R. Sivaraman, M.J. Jweeg, M. Zaidi, O.K.A. Alkadir, E. Kianfar et al., Engineered nanomaterials, plants, plant toxicity and biotransformation: a review. Egypt. J. Chem. 65(12), 151–164 (2022)

    Google Scholar 

  225. B. Abed-Hussein, A.B. Mahdi, S. Emad-Izzat, N.K. Acwin Dwijendra, R.M. Romero-Parra, L.A. Barboza-Arenas, E. Kianfar et al., Production, structural properties nano biochar and effects nano biochar in soil: a review. Egypt. J. Chem. 65(12), 607–618 (2022)

    Google Scholar 

  226. S.A. Jasim, M.M. Kadhim, V. Kn, I. Raya, S.J. Shoja, W. Suksatan, E. Kianfar et al., Molecular junctions: introduction and physical foundations, nanoelectrical conductivity and electronic structure and charge transfer in organic molecular junctions. Braz. J. Phys. 52(2), 31 (2022)

    Article  Google Scholar 

  227. H.Y. Kuo, C.L. Shih, E. Pan, Enhancing magnetoelectric effect in magneto-electro-elastic laminated composites via interface modulus and stress. Int. J. Solids Struct. 195, 66–73 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad Golchin Khazari.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khazari, S.G., Mohammadi, Y. & Kheirikhah, M.M. Influences of properties of magneto-electro-elastic materials of piezoelectric smart shells. JMST Adv. 6, 189–216 (2024). https://doi.org/10.1007/s42791-024-00069-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42791-024-00069-x

Keywords

Navigation