Log in

Effect of phenylalanine arginyl β-naphthylamide on the imipenem resistance, elastase production, and the expression of quorum sensing and virulence factor genes in Pseudomonas aeruginosa clinical isolates

  • Medicine and Public Health - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is one of the most important nosocomial pathogens that possess the ability to produce multiple antibiotic resistance and virulence factors. Elastase B (LasB) is the major factor implicated in tissue invasion and damage during P. aeruginosa infections, whose synthesis is regulated by the quorum sensing (QS) system. Anti-virulence approach is now considered as potential therapeutic alternative and/or adjuvant to current antibiotics’ failure. The aim of this study is primarily to find out the impact of the efflux pump inhibitor (EPI) phenylalanine arginyl β-naphthylamide (PAβN) on the production of elastase B and the gene expression of lasI quorum sensing and lasB virulence factor in clinical isolates of P. aeruginosa. Five P. aeruginosa isolates recovered from patients with respiratory tract infections were examined in this study. Antimicrobial susceptibility of isolates was performed by the disk agar diffusion method. Effect of the PAβN on imipenem susceptibility, bacterial viability, and elastase production was evaluated. The expression of lasB and lasI genes was measured by quantitative real-time PCR in the presence of PAβN. All isolates were identified as multidrug-resistant (MDR) and showed resistance to carbapenem (MIC = 64–256 µg/mL). Susceptibility of isolates to imipenem was highly increased in the presence of efflux inhibitor. PAβN significantly reduced elastase activity in three isolates tested without affecting bacterial growth. In addition, the relative expression of both lasB and lasI genes was diminished in all isolates in the presence of inhibitor. Efflux inhibition by using the EPI PAβN could be a potential target for controlling the P. aeruginosa virulence and pathogenesis. Furthermore, impairment of drug efflux by PAβN indicates its capability to be used as antimicrobial adjuvant that can decrease the resistance and lower the effective doses of current drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated and analyzed during this research were included in the main document of this manuscript.

Abbreviations

3-oxo-C12-HSL:

N-(3-oxododecanoyl)-L-homoserine lactone

AHLs:

N-acylhomoserine lactones

ANOVA:

One-way analysis of variance

AMR:

Antimicrobial resistance

BPPL:

Bacterial Priority Pathogens List

C4-HSL:

N-butyryl-L-homoserine lactone

CA-MHB:

Cation-adjusted Mueller–Hinton broth

CFU:

Colony forming unit; CLSI: Clinical Laboratory Standard Institute

CRPA:

Carbapenem-resistant P. aeruginosa

DA-HAI:

Device-associated healthcare-associated infection

ECR:

Elastin Congo red

EPIs:

Efflux pump inhibitors

ICUs:

Intensive care units

INICC:

International Nosocomial Infection Control Consortium

IRPA:

Imipenem-resistant P. aeruginosa

MDCK:

Madin–Darby canine kidney

MDR:

Multidrug-resistant

Mex:

Multidrug efflux pumps

MIC:

Minimum inhibitory concentration

NRT:

No reverse transcriptase

NTC:

No template control

OD:

Optical density

PAβN:

Phenylalanine arginyl β-naphthylamide

PDR:

Pandrug-resistant

QS:

Quorum sensing

rBMD:

reference broth microdilution

RND:

Resistance/nodulation/cell division

RT-qPCR:

Real-time quantitative reverse transcription polymerase chain reaction

TSA:

Tryptic soy agar

TSB:

Tryptic soy broth

WHO:

World Health Organization

XDR:

Extensively drug-resistant

References

  1. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A et al (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399(10325):629–655. https://doi.org/10.1016/S0140-6736(21)02653-2

    Article  CAS  Google Scholar 

  2. Tuon FF, Dantas LR, Suss PH, Tasca Ribeiro VS (2022) Pathogenesis of the Pseudomonas aeruginosa biofilm: a review. Pathogens 11(3):300. https://doi.org/10.3390/pathogens11030300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sarabhai S, Sharma P, Capalash N (2013) Ellagic acid derivatives from Terminalia chebula Retz. Downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS ONE 8(1):8e53441. https://doi.org/10.1371/journal.pone.0053441

    Article  CAS  Google Scholar 

  4. Sonmezer MC, Ertem G, Erdinc FS, Kaya Kilic E, Tulek N, Adiloglu A et al (2016) Evaluation of risk factors for antibiotic resistance in patients with nosocomial infections caused by Pseudomonas aeruginosa. Can J Infect Dis Med Microbiol 2016:1321487. https://doi.org/10.1155/2016/1321487

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pang Z, Raudonis R, Glick BR, Lin T-J, Cheng Z (2019) Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 37(1):177–192. https://doi.org/10.1016/j.biotechadv.2018.11.013

    Article  CAS  PubMed  Google Scholar 

  6. Behzadi P, Baráth Z, Gajdács M (2021) It’s not easy being green: a narrative review on the microbiology, virulence and therapeutic prospects of multidrug-resistant Pseudomonas aeruginosa. Antibiot (Basel) 10(1):42. https://doi.org/10.3390/antibiotics10010042

    Article  CAS  Google Scholar 

  7. Rosenthal VD, Duszynska W, Ider B-E, Gurskis V, Al-Ruzzieh MA, Myatra SN et al (2021) International nosocomial infection control consortium (INICC) report, data summary of 45 countries for 2013–2018, adult and pediatric units, device-associated module. Am J Infect Control 49(10):1267–1274. https://doi.org/10.1016/j.ajic.2021.04.077

    Article  PubMed  Google Scholar 

  8. WHO Bacterial Priority Pathogens List (2024): bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance (2024). Geneva: World Health Organization. https://www.who.int/publications/i/item/9789240093461

  9. Nemati Shahri F, Izanloo A, Sheikh Beig Goharrizi MA, Jamali A, Bagheri H, Hjimohammadi A et al (2022) Antimicrobial resistance, virulence factors, and genotypes of Pseudomonas aeruginosa clinical isolates from Gorgan, northern Iran. Int Microbiol 25(4):709–721. https://doi.org/10.1007/s10123-022-00256-7

    Article  CAS  Google Scholar 

  10. Jurado-Martín I, Sainz-Mejías M, McClean S (2021) Pseudomonas aeruginosa: an audacious pathogen with an adaptable arsenal of virulence factors. Int J Mol Sci 22(6):3128. https://doi.org/10.3390/ijms22063128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Galdino ACM, Viganor L, De Castro AA, Da Cunha EF, Mello TP, Mattos LM et al (2019) Disarming Pseudomonas aeruginosa virulence by the inhibitory action of 1, 10-phenanthroline-5, 6-dione-based compounds: elastase B (lasB) as a chemotherapeutic target. Front Microbiol 10:1701. https://doi.org/10.3389/fmicb.2019.01701

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yang J, Zhao H-L, Ran L-Y, Li C-Y, Zhang X-Y, Su H-N et al (2015) Mechanistic insights into elastin degradation by pseudolysin, the major virulence factor of the opportunistic pathogen Pseudomonas aeruginosa. Sci Rep 5:9936. https://doi.org/10.1038/srep09936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Golovkine G, Faudry E, Bouillot S, Voulhoux R, Attrée I, Huber P (2014) VE-cadherin cleavage by LasB protease from Pseudomonas aeruginosa facilitates type III secretion system toxicity in endothelial cells. PLoS Pathog 10(3):e1003939. https://doi.org/10.1371/journal.ppat.1003939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kida Y, Higashimoto Y, Inoue H, Shimizu T, Kuwano K (2008) A novel secreted protease from Pseudomonas aeruginosa activates NF-κB through protease‐activated receptors. Cell Microbiol 10(7):1491–1504. https://doi.org/10.1111/j.1462-5822.2008.01142.x

    Article  CAS  PubMed  Google Scholar 

  15. Kuang Z, Hao Y, Walling BE, Jeffries JL, Ohman DE, Lau GW (2011) Pseudomonas aeruginosa elastase provides an escape from phagocytosis by degrading the pulmonary surfactant protein-A. PLoS ONE 6(11):e27091. https://doi.org/10.1371/journal.pone.0027091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bastaert F, Kheir S, Saint-Criq V, Villeret B, Dang PM-C, El-Benna J et al (2018) Pseudomonas aeruginosa LasB subverts alveolar macrophage activity by interfering with bacterial killing through downregulation of innate immune defense, reactive oxygen species generation, and complement activation. Front Immunol 9:1675. https://doi.org/10.3389/fimmu.2018.01675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Döring G, Obernesser H, Botzenhart K (1981) Extracellular toxins of Pseudomonas aeruginosa. II. Effect of two proteases on human immunoglobulins IgG, IgA and secretory IgA (author’s transl). Zentralblatt Bakteriologie A 249(1):89–98

    Google Scholar 

  18. Han M, Wang X, Ding H, ** M, Yu L, Wang J et al (2014) The role of N-glycosylation sites in the activity, stability, and expression of the recombinant elastase expressed by Pichia pastoris. Enzyme Microb Technol 54:32–37. https://doi.org/10.1016/j.enzmictec.2013.09.014

    Article  CAS  PubMed  Google Scholar 

  19. Pearson JP, Passador L, Iglewski BH, Greenberg EP (1995) A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92(5):1490–1494. https://doi.org/10.1073/pnas.92.5.1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A, Iglewski BH et al (1994) Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci U S A 91(1):197–201. https://doi.org/10.1073/pnas.91.1.197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smith RS, Iglewski BH (2003) P. Aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6(1):56–60. https://doi.org/10.1016/s1369-5274(03)00008-0

    Article  CAS  PubMed  Google Scholar 

  22. Williams SC, Patterson EK, Carty NL, Griswold JA, Hamood AN, Rumbaugh KP (2004) Pseudomonas aeruginosa Autoinducer enters and functions in mammalian cells. J Bacteriol 186(8):2281–2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Valot B, Guyeux C, Rolland JY, Mazouzi K, Bertrand X, Hocquet D (2015) What it takes to be a Pseudomonas aeruginosa? The core genome of the opportunistic pathogen updated. PLoS ONE 10(5):e0126468. https://doi.org/10.1371/journal.pone.0126468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mokhonov VV, Mokhonova EI, Akama H, Nakae T (2004) Role of the membrane fusion protein in the assembly of resistance-nodulation-cell division multidrug efflux pump in Pseudomonas aeruginosa. Biochem Biophys Res Commun 322(2):483–489. https://doi.org/10.1016/j.bbrc.2004.07.140

    Article  CAS  PubMed  Google Scholar 

  25. Zahedi Bialvaei A, Rahbar M, Hamidi-Farahani R, Asgari A, Esmailkhani A, Soleiman-Meigooni S (2021) Expression of RND efflux pumps mediated antibiotic resistance in Pseudomonas aeruginosa clinical strains. Microb Pathog 153:104789. https://doi.org/10.1016/j.micpath.2021.104789

    Article  CAS  PubMed  Google Scholar 

  26. Horna G, López M, Guerra H, Saénz Y, Ruiz J (2018) Interplay between MexAB-OprM and MexEF-OprN in clinical isolates of Pseudomonas aeruginosa. Sci Rep 8(1):16463. https://doi.org/10.1038/s41598-018-34694-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Morita Y, Tomida J, Kawamura Y (2012) MexXY multidrug efflux system of Pseudomonas aeruginosa. Front Microbiol 3:408. https://doi.org/10.3389/fmicb.2012.00408

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fernando DM, Kumar A (2013) Resistance-nodulation-division multidrug efflux pumps in gram-negative bacteria: role in virulence. Antibiot (Basel) 2(1):163–181. https://doi.org/10.3390/antibiotics2010163

    Article  CAS  Google Scholar 

  29. Alav I, Sutton JM, Rahman KM (2018) Role of bacterial efflux pumps in biofilm formation. J Antimicrob Chemother 73(8):2003–2020. https://doi.org/10.1093/jac/dky042

    Article  CAS  PubMed  Google Scholar 

  30. Minagawa S, Inami H, Kato T, Sawada S, Yasuki T, Miyairi S et al (2012) RND type efflux pump system MexAB-OprM of Pseudomonas aeruginosa selects bacterial languages, 3-oxo-acyl-homoserine lactones, for cell-to-cell communication. BMC Microbiol 12:70. https://doi.org/10.1186/1471-2180-12-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sánchez P, Linares JF, Ruiz-Díez B, Campanario E, Navas A, Baquero F et al (2002) Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants. J Antimicrob Chemother 50(5):657–664. https://doi.org/10.1093/jac/dkf185

    Article  CAS  PubMed  Google Scholar 

  32. Hirakata Y, Srikumar R, Poole K, Gotoh N, Suematsu T, Kohno S et al (2002) Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa. J Exp Med 196(1):109–118. https://doi.org/10.1084/jem.20020005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Allen RC, Popat R, Diggle SP, Brown SP (2014) Targeting virulence: can we make evolution-proof drugs? Nat Rev Microbiol 12(4):300–308. https://doi.org/10.1038/nrmicro3232

    Article  CAS  PubMed  Google Scholar 

  34. Dickey SW, Cheung GY, Otto M (2017) Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov 16(7):457–571. https://doi.org/10.1038/nrd.2017.23

    Article  CAS  PubMed  Google Scholar 

  35. El-Shaer S, Shaaban M, Barwa R, Hassan R (2016) Control of quorum sensing and virulence factors of Pseudomonas aeruginosa using phenylalanine arginyl β-naphthylamide. J Med Microbiol 65(10):1194–1204. https://doi.org/10.1099/jmm.0.000327

    Article  CAS  PubMed  Google Scholar 

  36. Fuste E, López-Jiménez L, Segura C, Gainza E, Vinuesa T, Vinas M (2013) Carbapenem-resistance mechanisms of multidrug-resistant Pseudomonas aeruginosa. J Med Microbiol 62(9):1317–1325. https://doi.org/10.1099/jmm.0.058354-0

    Article  CAS  PubMed  Google Scholar 

  37. Hirakata Y, Kondo A, Hoshino K, Yano H, Arai K, Hirotani A et al (2009) Efflux pump inhibitors reduce the invasiveness of Pseudomonas aeruginosa. Int J Antimicrob Agents 34(4):343–346. https://doi.org/10.1016/j.ijantimicag.2009.06.007

    Article  CAS  PubMed  Google Scholar 

  38. Rampioni G, Pillai CR, Longo F, Bondì R, Baldelli V, Messina M et al (2017) Effect of efflux pump inhibition on Pseudomonas aeruginosa transcriptome and virulence. Sci Rep 7(1):11392. https://doi.org/10.1038/s41598-017-11892-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dogonchi AA, Ghaemi EA, Ardebili A, Yazdansetad S, Pournajaf A (2018) Metallo-β-lactamase-mediated resistance among clinical carbapenem-resistant Pseudomonas aeruginosa isolates in northern Iran: a potential threat to clinical therapeutics. Tzu Chi Med J 30(2):90–96. https://doi.org/10.4103/tcmj.tcmj_101_17

    Article  PubMed Central  Google Scholar 

  40. Clinical and Laboratory Standards Institute (CLSI) (2020) Performance standards for antimicrobial susceptibility testing, 30th ed. Wayne, PA: CLSI supplement M100. https://clsi.org

  41. Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas M, Giske C et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  PubMed  Google Scholar 

  42. Clinical and Laboratory Standards Institute (CLSI) (2018) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 11th ed. Wayne, PA: CLSI supplement M7. https://clsi.org

  43. Lamers RP, Cavallari JF, Burrows LL (2013) The efflux inhibitor phenylalanine-arginine beta-naphthylamide (PAβN) permeabilizes the outer membrane of gram-negative bacteria. PLoS ONE 8(3):e60666. https://doi.org/10.1371/journal.pone.0060666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Renau TE, Léger R, Flamme EM, Sangalang J, She MW, Yen R et al (1999) Inhibitors of efflux pumps in Pseudomonas aeruginosa Potentiate the activity of the fluoroquinolone antibacterial levofloxacin. J Med Chem 42(4):4928–4931. https://doi.org/10.1021/jm9904598

    Article  CAS  PubMed  Google Scholar 

  45. Lomovskaya O, Warren MS, Lee A, Galazzo J, Fronko R, Lee M et al (2001) Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother 45(1):105–116. https://doi.org/10.1128/AAC.45.1.105-116.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vargiu AV, Ruggerone P, Opperman TJ, Nguyen ST, Nikaido H (2014) Molecular mechanism of MBX2319 inhibition of Escherichia coli AcrB multidrug efflux pump and comparison with other inhibitors. Antimicrob Agents Chemother 58(10):6224–6234. https://doi.org/10.1128/AAC.03283-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vargiu AV, Nikaido H (2012) Multidrug binding properties of the AcrB efflux pump characterized by molecular dynamics simulations. Proc Natl Acad Sci U S A 109(5):20637–20642. https://doi.org/10.1073/pnas.1218348109

    Article  PubMed  PubMed Central  Google Scholar 

  48. Opperman TJ, Nguyen ST (2015) Recent advances toward a molecular mechanism of efflux pump inhibition. Front Microbiol 6:421. https://doi.org/10.3389/fmicb.2015.00421

    Article  PubMed  PubMed Central  Google Scholar 

  49. Williams P, Cámara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12(2):182–191. https://doi.org/10.1016/j.mib.2009.01.005

    Article  CAS  PubMed  Google Scholar 

  50. Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25(4):365–404. https://doi.org/10.1111/j.1574-6976.2001.tb00583.x

    Article  CAS  PubMed  Google Scholar 

  51. Maseda H, Sawada I, Saito K, Uchiyama H, Nakae T, Nomura N (2004) Enhancement of the mexAB-oprM efflux pump expression by a quorum-sensing autoinducer and its cancellation by a regulator, MexT, of the mexEF-oprN efflux pump operon in Pseudomonas aeruginosa. Antimicrob Agents Chemother 48(4):1320–1328. https://doi.org/10.1128/AAC.48.4.1320-1328.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sawada I, Maseda H, Nakae T, Uchiyama H, Nomura N (2004) A quorum-sensing autoinducer enhances the mexAB-oprM efflux-pump expression without the MexR-mediated regulation in Pseudomonas aeruginosa. Microbiol Immunol 48(5):435–439. https://doi.org/10.1111/j.1348-0421.2004.tb03533.x

    Article  CAS  PubMed  Google Scholar 

  53. Pearson JP, Van Delden C, Iglewski BH (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181(4):1203–1210. https://doi.org/10.1128/JB.181.4.1203-1210.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kvist M, Hancock V, Klemm P (2008) Inactivation of efflux pumps abolishes bacterial biofilm formation. Appl Environ Microbiol 74(23):7376–3782. https://doi.org/10.1128/AEM.01310-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Piddock LJ (2006) Multidrug-resistance efflux pumps? Not just for resistance. Nat Rev Microbiol 4(8):629–636. https://doi.org/10.1038/nrmicro1464

    Article  CAS  PubMed  Google Scholar 

  56. Alcalde-Rico M, Hernando-Amado S, Blanco P, Martínez JL (2016) Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Front Microbiol 7:1483. https://doi.org/10.3389/fmicb.2016.01483

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vandeputte OM, Kiendrebeogo M, Rasamiravaka T, Stevigny C, Duez P, Rajaonson S et al (2011) The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology 157(7):2120–2132. https://doi.org/10.1099/mic.0.049338-0

    Article  CAS  PubMed  Google Scholar 

  58. Ahmed SA, Rudden M, Smyth TJ, Dooley JS, Marchant R, Banat IM (2019) Natural quorum sensing inhibitors effectively downregulate gene expression of Pseudomonas aeruginosa virulence factors. Appl Microbiol Biotechno 103(8):3521–3535. https://doi.org/10.1007/s00253-019-09618-0

    Article  CAS  Google Scholar 

  59. Gambello MJ, Kaye S, Iglewski BH (1993) LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect Immun 61(4):1180–1184. https://doi.org/10.1128/iai.61.4.1180-1184.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N et al (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22(15):3803–3815. https://doi.org/10.1093/emboj/cdg366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ahmad K, Ali A, Rahat S (2018) Prevalence of virulence genes among clinical isolates of Pseudomonas aeruginosa collected from Peshawar, Pakistan. J Pak Med Assoc 68(12):1787–1791. https://www.jpma.org.pk/PdfDownload/8988

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank all colleagues at the Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran, for their laboratory cooperation.

Funding

The project was financially supported by a grant (Grant No. 111143) from the research deputy of Golestan University of Medical Sciences, Gorgan, Iran.

Author information

Authors and Affiliations

Authors

Contributions

AA and FHZ conceptualized and designed study, performed the experiments, interpreted results, and analyzed data. AA, FHZ, and MY wrote the manuscript and AA critically revised it. EG, IN, and MY helped in setting of the laboratory experiments, interpretation of results, analysis of data, and writing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Abdollah Ardebili.

Ethics declarations

Ethics approval and consent to participate

This study was approved by the Ethics Committee of Golestan University of Medical Sciences with ethical code number IR.GOUMS.REC.1399.200. The experiments were performed on previously isolated bacteria from clinical specimens of hospitalized patients. The patients did not directly participate in this research work.

Consent for publication

Not applicable.

Competing interests

The authors declare that there is no conflict of interest.

Additional information

Responsible Editor: Guilherme Sgobbi Zagui.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolpirani, F.H., Ghaemi, E.A., Yasaghi, M. et al. Effect of phenylalanine arginyl β-naphthylamide on the imipenem resistance, elastase production, and the expression of quorum sensing and virulence factor genes in Pseudomonas aeruginosa clinical isolates. Braz J Microbiol (2024). https://doi.org/10.1007/s42770-024-01426-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42770-024-01426-7

Keywords

Navigation