Log in

Quinoline-2-one derivatives as promising antibacterial agents against multidrug-resistant Gram-positive bacterial strains

  • Clinical Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

This study describes the discovery of a variety of quinoline2-one derivatives with significant antibacterial action vs a spectrum of multidrug-resistant Gram-positive bacterial strains, especially methicillin-resistant Staphylococcus aureus (MRSA). Compounds 6c, 6l, and 6o exhibited significant antibacterial activity versus the Gram-positive bacterial pathogens evaluated. In comparison to the reference daptomycin, compound 6c demonstrated the most effective activity among the assessed derivatives, with MIC concentrations of 0.75 μg/mL versus MRSA and VRE and 2.50 μg/mL against MRSE. We also reported on these compounds’ biofilm and dihydrofolate reductase inhibitory activities. Compound 6c showed the greatest antibiofilm action in a dose-dependent way and a substantial decrease of biofilm development in the MRSA ACL51 strain at concentrations of 0.5, 0.25, and 0.12 MIC, with reductions of 79%, 55%, and 38%, consecutively, whereas the corresponding values for vancomycin were 20%, 12%, and 9%. These findings imply that these quinoline compounds could be used to develop a new category of antibiotic representatives to prevent Gram-positive drug-resistant bacterial strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Scheme 1

Similar content being viewed by others

References

  1. Lomazzi M, Moore M, Johnson A, Balasegaram M, Borisch B (2019) Antimicrobial resistance–moving forward? BMC pub health 19:1–6

    Article  Google Scholar 

  2. Chokshi A, Sifri Z, Cennimo D, Horng H (2019) Global contributors to antibiotic resistance. J Global Infect Dis 11(1):36–42

    Article  Google Scholar 

  3. de Kraker ME, Stewardson AJ, Harbarth S (2016) Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med 13(11):e1002184

    Article  PubMed  PubMed Central  Google Scholar 

  4. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A et al (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399(10325):629–655

    Article  CAS  Google Scholar 

  5. Gwynn MN, Portnoy A, Rittenhouse SF, Payne DJ (2010) Challenges of antibacterial discovery revisited. Ann N Y Acad Sci 1213(1):5–19

    Article  PubMed  Google Scholar 

  6. Abushaheen MA, Fatani AJ, Alosaimi M, Mansy W, George M, Acharya S et al (2020) Antimicrobial resistance, mechanisms and its clinical significance Disease-a-Month. 66(6):100971

  7. Rello J, Bunsow E, Perez A (2016) What if there were no new antibiotics? A look at alternatives. Expert Rev Clin Pharmacol 9(12):1547–1555

    Article  CAS  PubMed  Google Scholar 

  8. Askari S, B, Kra**ovic M. (2010) Dihydrofolate reductase gene variations in susceptibility to disease and treatment outcomes. Curr Genomics 11(8):578–583

    Article  PubMed  PubMed Central  Google Scholar 

  9. Eshetie S, Gizachew M, Dagnew M, Kumera G, Woldie H, Ambaw F et al (2017) Multidrug resistant tuberculosis in Ethiopian settings and its association with previous history of anti-tuberculosis treatment: a systematic review and meta-analysis. BMC Infect Dis 17:1–12

    Article  Google Scholar 

  10. Watkins RR, David MZ, Salata RA (2012) Current concepts on the virulence mechanisms of meticillin-resistant Staphylococcus aureus. J Med Microbiol 61(Pt 9):1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Krute CN (2015) Investigation of post-translational modifications in Staphylococcus aureus. University of South Florida

    Google Scholar 

  12. Klein E, Smith DL, Laxminarayan R (2007) Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999–2005. Emerg Infect Dis 13(12):1840

    Article  PubMed  PubMed Central  Google Scholar 

  13. Harris SJ, Cormican M, Cummins E (2012) Antimicrobial residues and antimicrobial-resistant bacteria: impact on the microbial environment and risk to human health—a review. Hum Ecol Risk Assess Int J 18(4):767–809

    Article  CAS  Google Scholar 

  14. Gill SR, Fouts DE, Archer GL, Mongodin EF, DeBoy RT, Ravel J et al (2005) Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol 187(7):2426–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cetinkaya Y, Falk P, Mayhall CG (2000) Vancomycin-resistant enterococci. Clin Microbiol Rev 13(4):686–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zimlichman E, Henderson D, Tamir O, Franz C, Song P, Yamin CK et al (2013) Health care–associated infections: a meta-analysis of costs and financial impact on the US health care system. JAMA Intern Med 173(22):2039–2046

    Article  PubMed  Google Scholar 

  17. Feng T, Lu H, Ye X, Nie C, Zhang J, Yu L et al (2022) Selective inactivation of Gram-positive bacteria in vitro and in vivo through metabolic labelling. Sci China Mater 65(1):237–245

    Article  CAS  Google Scholar 

  18. Kara Ali R, Surme S, Balkan II, Salihoglu A, Sahin Ozdemir M, Ozdemir Y et al (2020) An eleven-year cohort of bloodstream infections in 552 febrile neutropenic patients: resistance profiles of Gram-negative bacteria as a predictor of mortality. Ann Hematol 99:1925–1932

    Article  CAS  PubMed  Google Scholar 

  19. Teng P, Huo D, Nimmagadda A, Wu J, She F, Su M et al (2016) Small antimicrobial agents based on acylated reduced amide scaffold. J Med Chem 59(17):7877–7887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stokes JM, MacNair CR, Ilyas B, French S, Côté J-P, Bouwman C et al (2017) Pentamidine sensitizes Gram-negative pathogens to antibiotics and overcomes acquired colistin resistance. Nat Microbiol 2(5):1–8

    Article  Google Scholar 

  21. O'Connell KM, Hodgkinson JT, Sore HF, Welch M, Salmond GP, Spring DR (2013) Combating multidrug-resistant bacteria: current strategies for the discovery of novel antibacterials. Angewandte Chemie Int Ed 52(41):10706–10733

    Article  CAS  Google Scholar 

  22. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP et al (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517(7535):455–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin S, Koh J-J, Aung TT, Lim F, Li J, Zou H et al (2017) Symmetrically substituted xanthone amphiphiles combat gram-positive bacterial resistance with enhanced membrane selectivity. J Med Chem 60(4):1362–1378

    Article  CAS  PubMed  Google Scholar 

  24. LaMarche MJ, Leeds JA, Brewer J, Dean K, Ding J, Dzink-Fox J et al (2016) Antibacterial and solubility optimization of thiomuracin A. J Med Chem 59(14):6920–6928

    Article  CAS  PubMed  Google Scholar 

  25. Aly AA, Ramadan M, Abuo-Rahma GE-DA, Elshaier YAMM, Elbastawesy MAI, Brown AB, et al. Chapter three-quinolones as prospective drugs: their syntheses and biological applications. Adv Heterocy Chem. 135: Academic Press; (2021).147-196.

  26. Dib M, Ouchetto H, Ouchetto K, Hafid A, Khouili M (2021) Recent Developments of quinoline derivatives and their potential biological activities. Curr Org Synth 18(3):248–269

    Article  CAS  PubMed  Google Scholar 

  27. Srivastava V, Singh PK, Tivari S, Singh PP. Visible light photocatalysis in the synthesis of pharmaceutically relevant heterocyclic scaffolds. Organic Chemistry Front 2022;9(5):1485-1507.

  28. Ajani OO, Iyaye KT, Ademosun OT (2022) Recent advances in chemistry and therapeutic potential of functionalized quinoline motifs - a review. RSC Adv 12(29):18594–18614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matada BS, Pattanashettar R, Yernale NG (2021) A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg Med Chem 32:115973

    Article  CAS  PubMed  Google Scholar 

  30. Al-Jumaily E, Latif A, Al-Bayati R (2016) Effect of a new quinoline-2-one derivatives (compound 3) on purified DNA gyrase from clinical isolate Pseudomonas aeruginosa PA31. IOSR J Pharmacy 12:12–18

    Google Scholar 

  31. Proisl K, Kafka S, Kosmrlj J (2017) Chemistry and applications of 4-hydroxyquinolin-2-one and quinoline-2, 4-dionebased compounds. Curr Org Chem 21(19):1949–1975

    Article  CAS  Google Scholar 

  32. Estradé O, Vozmediano V, Carral N, Isla A, González M, Poole R et al (2022) Key factors in effective patient-tailored dosing of fluoroquinolones in urological infections: interindividual pharmacokinetic and pharmacodynamic variability. Antibiotics 11(5):641–652

    Article  PubMed  PubMed Central  Google Scholar 

  33. Millanao AR, Mora AY, Villagra NA, Bucarey SA, Hidalgo AA (2021) Biological effects of quinolones: a family of broad-spectrum antimicrobial agents. Molecules 26(23):7153–7163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fair RJ, Tor Y (2014) Antibiotics and bacterial resistance in the 21st century. Perspect med chem 6; PMC. S14459

  35. Hooper DC, Jacoby GA (2015) Mechanisms of drug resistance: quinolone resistance. Ann N Y Acad Sci 1354(1):12–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Elbastawesy MA, Mohamed FA, Zaki I, Alahmdi MI, Alzahrani SS, Alzahrani HA et al (2023) Design, synthesis and antimicrobial activity of novel quinoline-2-one hybrids as promising DNA gyrase and topoisomerase IV inhibitors. J Mol Struct 1278:134902

  37. Youssif BGM (2013) Synthesis and biological evaluation of some new coumarin derivatives as antimicrobial agents. Bullet Pharmaceut Sci Assiut 36(2):105–116

    Article  CAS  Google Scholar 

  38. Youssif B, Abdel-Moty SG, Sayed IM (2014) Synthesis and biological evaluation of some novel 1, 2, 3-triazol-N-arylidene Acetohydrazide incorporating benzimidazole ring moiety as potential antimicrobial agents. J Curr Chem Pharm Sci 4:54–64

    CAS  Google Scholar 

  39. Hofny HA, Mohamed MF, Gomaa HA, Abdel-Aziz SA, Youssif BG, El-Koussi NA et al (2021) Design, synthesis, and antibacterial evaluation of new quinoline-1, 3, 4-oxadiazole and quinoline-1, 2, 4-triazole hybrids as potential inhibitors of DNA gyrase and topoisomerase IV. Bioorg Chem 112:104920

    Article  CAS  PubMed  Google Scholar 

  40. Frejat FOA, Cao Y, Zhai H, Abdel-Aziz SA, Gomaa HA, Youssif BG et al (2022) Novel 1, 2, 4-oxadiazole/pyrrolidine hybrids as DNA gyrase and topoisomerase IV inhibitors with potential antibacterial activity. Arab J Chem 15(1):103538

    Article  CAS  Google Scholar 

  41. Frejat FOA, Zhai H, Cao Y, Wang L, Mostafa YA, Gomaa HA et al (2022) Novel indazole derivatives as potent apoptotic antiproliferative agents by multi-targeted mechanism: synthesis and biological evaluation. Bioorg Chem 126:105922

    Article  Google Scholar 

  42. Al-Wahaibi LH, Amer AA, Marzouk AA, Gomaa HA, Youssif BG, Abdelhamid AA (2021) Design, synthesis, and antibacterial screening of some novel heteroaryl-based ciprofloxacin derivatives as DNA gyrase and topoisomerase IV inhibitors. Pharmaceut 14(5):399

    Article  CAS  Google Scholar 

  43. Abdelhameed RM, Abu-Elghait M, El-Shahat M (2020) Hybrid three MOFs composites (ZIF-67@ ZIF-8@ MIL-125-NH2): enhancement the biological and visible-light photocatalytic activity. J Environ Chem Eng 8(5):104107

    Article  CAS  Google Scholar 

  44. Rashid N, Thapliyal C, Chattopadhyay PC (2016) Dihydrofolate reductase as a versatile drug target in healthcare. J Proteins Proteom 7(4)

  45. Gomaa HA, Shaker ME, Alzarea SI, Hendawy O, Mohamed FA, Gouda AM et al (2022) Optimization and SAR investigation of novel 2, 3-dihydropyrazino [1, 2-a] indole-1, 4-dione derivatives as EGFR and BRAFV600E dual inhibitors with potent antiproliferative and antioxidant activities. Bioorg Chem 120:105616

    Article  CAS  PubMed  Google Scholar 

  46. Gomaa HA, El-Sherief HA, Hussein S, Gouda AM, Salem OI, Alharbi KS et al (2020) Novel 1, 2, 4-triazole derivatives as apoptotic inducers targeting p53: synthesis and antiproliferative activity. Bioorg Chem 105:104369

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Professor Dr. Bahaa G. M. Youssif, and Dr. Elbastawesy M.A., Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt, are gratefully acknowledged for providing compounds 6c, 6i, 6l, and 6o for biological assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayat Ali Alzahrani.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Responsible Editor: Ilana Camargo

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzahrani, H.A. Quinoline-2-one derivatives as promising antibacterial agents against multidrug-resistant Gram-positive bacterial strains. Braz J Microbiol 54, 2799–2805 (2023). https://doi.org/10.1007/s42770-023-01132-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01132-w

Keywords

Navigation