Log in

Mycovirus-induced hypovirulence in notorious fungi Sclerotinia: a comprehensive review

  • Bacterial, Fungal and Virus Molecular Biology - Review
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Members of the genus Sclerotinia are notorious plant pathogens with a diverse host range that includes many important crops. A huge number of mycoviruses have been identified in this genus; some of these viruses are reported to have a hypovirulent effect on the fitness of their fungal hosts. These mycoviruses are important to researchers from a biocontrol perspective which was first implemented against fungal diseases in 1990. In this review, we have presented the data of all hypovirulent mycoviruses infecting Sclerotinia sclerotiorum isolates. The data of hypovirulent mycoviruses ranges from 1992 to 2023. Currently, mycoviruses belonging to 17 different families, including (+) ssRNA, (−ssRNA), dsRNA, and ssDNA viruses, have been reported from this genus. Advances in studies had shown a changed expression of certain host genes (responsible for cell cycle regulation, DNA replication, repair pathways, ubiquitin proteolysis, gene silencing, methylation, pathogenesis-related, sclerotial development, carbohydrate metabolism, and oxalic acid biosynthesis) during the course of mycoviral infection, which were termed differentially expressed genes (DEGs). Together, research on fungal viruses and hypovirulence in Sclerotinia species can deepen our understanding of the cellular processes that affect how virulence manifests in these phytopathogenic fungi and increase the potential of mycoviruses as a distinct mode of biological control. Furthermore, the gathered data can also be used for in-silico analysis, which includes finding the signature sites [e.g., hypovirus papain-like protease (HPP) domain, “CCHH” motif, specific stem-loop structures, p29 motif as in CHV1, A-rich sequence, CA-rich sequences as in MoV1, GCU motif as in RnMBV1, Core motifs in hypovirus-associated RNA elements (HAREs) as in CHV1] that are possibly responsible for hypovirulence in mycoviruses.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mu F, **e J, Cheng S, You MP, Barbetti MJ, Jia J, Wang Q, Cheng J, Fu Y, Chen T, Jiang D (2017) Virome characterization of a collection of S. sclerotiorum from Australia. Front Microbiol 8:2540

    PubMed  Google Scholar 

  2. O'Sullivan CA, Belt K, Thatcher LF (2021) Tackling control of a cosmopolitan phytopathogen: Sclerotinia. Front Plant Sci 12:707509

    PubMed  PubMed Central  Google Scholar 

  3. Bolton MD, Thomma BP, Nelson BD (2006) Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7:1–16

    CAS  PubMed  Google Scholar 

  4. Wang J-X, Ma H-X, Chen Y, Zhu X-F, Yu W-Y, Tang Z-H, Chen C-J, Zhou M-G (2009) Sensitivity of Sclerotinia sclerotiorum from oilseed crops to boscalid in Jiangsu Province of China. Crop Prot 28:882–886

    CAS  Google Scholar 

  5. Bastos RW, Rossato L, Goldman GH, Santos DA (2021) Fungicide effects on human fungal pathogens: cross-resistance to medical drugs and beyond. PLoS Pathog 17:e1010073

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sarkar S, Gil JDB, Keeley J, Jansen K (2021) The use of pesticides in develo** countries and their impact on health and the right to food. European Union

    Google Scholar 

  7. Antwi-Boasiako A, Wang Y, Dapaah HK, Zhao T (2022) Mitigating against Sclerotinia diseases in legume crops: a comprehensive review. Agronomy. 12(12):3140. https://doi.org/10.3390/agronomy12123140

    Article  Google Scholar 

  8. Chen X, Zhu X, Ding Y, Shen Y (2011) Antifungal activity of tautomycin and related compounds against Sclerotinia sclerotiorum. J Antibiot (Tokyo) 64(8):563–569

    CAS  PubMed  Google Scholar 

  9. Smolińska U, Kowalska B (2018) Biological control of the soil-borne fungal pathogen Sclerotinia sclerotiorum –– a review. J Plant Pathol 100:1–12

    Google Scholar 

  10. Yu X, Li B, Fu Y, Jiang D, Ghabrial SA, Li G, Peng Y, **e J, Cheng J, Huang J, Yi X (2010) A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proc Natl Acad Sci U S A 107:8387–8392

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Google Scholar 

  12. Khan HA, Baig DI, Bhatti MF (2023) An overview of mycoviral curing strategies used in evaluating fungal host fitness. Mol Biotechnol:1–18

  13. Longkumer IY, Ahmad MA (2020) Potential of mycovirus in the biological control of fungal plant pathogens: a review. Agric Rev 41:238–247

    Google Scholar 

  14. Turina M, Rostagno L (2007) Virus-induced hypovirulence in Cryphonectria Parasitica: still an unresolved conundrum. J Plant Pathol:89

  15. Pandit MA, Kumar J, Gulati S, Bhandari N, Mehta P, Katyal R, Rawat CD, Mishra V, Kaur J (2022) Major biological control strategies for plant pathogens. Pathogens 11:273

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Milgroom MG, Cortesi P (2004) Biological control of chestnut blight with hypovirulence: a critical analysis. Annu Rev Phytopathol 42:311–338

    CAS  PubMed  Google Scholar 

  17. Hillman BI, Suzuki N (2004) Viruses of the chestnut blight fungus, Cryphonectria parasitica. Adv Virus Res 63:423–472

    CAS  PubMed  Google Scholar 

  18. Suzuki N, Supyani S, Maruyama K, Hillman BI (2004) Complete genome sequence of Mycoreovirus-1/Cp9B21, a member of a novel genus within the family Reoviridae, isolated from the chestnut blight fungus Cryphonectria parasitica. J Gen Virol 85:3437–3448

    CAS  PubMed  Google Scholar 

  19. Chiba S, Salaipeth L, Lin Y-H, Sasaki A, Kanematsu S, Suzuki N (2009) A novel bipartite double-stranded RNA mycovirus from the white root rot fungus Rosellinia necatrix: molecular and biological characterization, taxonomic considerations, and potential for biological control. J Virol 83:12801–12812

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Boland GJ (1992) Hypovirulence and double-stranded RNA in Sclerotinia sclerotiorum. Can J Plant Pathol 14:10–17

    CAS  Google Scholar 

  21. **e J, Wei D, Jiang D, Fu Y, Li G, Ghabrial S, Peng Y (2006) Characterization of debilitation-associated mycovirus infecting the plant-pathogenic fungus Sclerotinia sclerotiorum. J Gen Virol 87:241–249

    CAS  PubMed  Google Scholar 

  22. Liu H, Fu Y, Jiang D, Li G, **e J, Peng Y, Yi X, Ghabrial SA (2009) A novel mycovirus that is related to the human pathogen hepatitis E virus and rubi-like viruses. J Virol 83:1981–1991

    CAS  PubMed  Google Scholar 

  23. Hamid MR, **e J, Wu S, Maria SK, Zheng D, Assane Hamidou A, Wang Q, Cheng J, Fu Y, Jiang D (2018) A novel Deltaflexivirus that infects the plant fungal pathogen, Sclerotinia sclerotiorum, can be transmitted among host vegetative incompatible strains. Viruses 10:295

    PubMed  PubMed Central  Google Scholar 

  24. **e J, **ao X, Fu Y, Liu H, Cheng J, Ghabrial SA, Li G, Jiang D (2011) A novel mycovirus closely related to hypoviruses that infects the plant pathogenic fungus Sclerotinia sclerotiorum. Virology 418:49–56

    CAS  PubMed  Google Scholar 

  25. Khalifa ME, Pearson MN (2014) Characterisation of a novel hypovirus from Sclerotinia sclerotiorum potentially representing a new genus within the Hypoviridae. Virology 464-465:441–449

    CAS  PubMed  Google Scholar 

  26. Marzano SY, Hobbs HA, Nelson BD, Hartman GL, Eastburn DM, McCoppin NK, Domier LL (2015) Transfection of Sclerotinia sclerotiorum with in vitro transcripts of a naturally occurring interspecific recombinant of Sclerotinia sclerotiorum hypovirus 2 significantly reduces virulence of the fungus. J Virol 89:5060–5071

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu Z, Wu S, Cheng J, Fu Y, Jiang D, **e J (2014) Molecular characterization of two positive-strand RNA viruses co-infecting a hypovirulent strain of Sclerotinia sclerotiorum. Virology 464-465:450–459

    CAS  PubMed  Google Scholar 

  28. Zhong J, Chen D, Zhu HJ, Gao BD, Zhou Q (2016) Hypovirulence of Sclerotium rolfsii caused by associated RNA mycovirus. Front Microbiol 7:1798

    PubMed  PubMed Central  Google Scholar 

  29. **e J, Ghabrial SA (2012) Molecular characterization of two mitoviruses co-infecting a hypovirulent isolate of the plant pathogenic fungus Sclerotinia sclerotiorum [corrected]. Virology 428:77–85

    CAS  PubMed  Google Scholar 

  30. Khalifa ME, Pearson MN (2013) Molecular characterization of three mitoviruses co-infecting a hypovirulent isolate of Sclerotinia sclerotiorum fungus. Virology 441:22–30

    CAS  PubMed  Google Scholar 

  31. Wang Y, Xu Z, Hai D, Huang H, Cheng J, Fu Y, Lin Y, Jiang D, **e J (2022) Mycoviromic analysis unveils complex virus composition in a hypovirulent strain of Sclerotinia sclerotiorum. J Fungi (Basel) 8:649

    CAS  PubMed  Google Scholar 

  32. Xu Z, Wu S, Liu L, Cheng J, Fu Y, Jiang D, **e J (2015) A mitovirus related to plant mitochondrial gene confers hypovirulence on the phytopathogenic fungus Sclerotinia sclerotiorum. Virus Res 197:127–136

    CAS  PubMed  Google Scholar 

  33. Ran H, Liu L, Li B, Cheng J, Fu Y, Jiang D, **e J (2016) Co-infection of a hypovirulent isolate of Sclerotinia sclerotiorum with a new botybirnavirus and a strain of a mitovirus. Virol J 13:92

    PubMed  PubMed Central  Google Scholar 

  34. Deng F, Xu R, Boland GJ (2003) Hypovirulence-associated double-stranded RNA from Sclerotinia homoeocarpa is conspecific with Ophiostoma novo-ulmi mitovirus 3a-Ld. Phytopathology 93:1407–1414

    CAS  PubMed  Google Scholar 

  35. Hai D, Li J, Lan S, Wu T, Li Y, Cheng J, Fu Y, Lin Y, Jiang D, Wang M, **e J (2022) Discovery and evolution of six positive-sense RNA viruses co-infecting hypovirulent strain SCH733 of Sclerotinia sclerotiorum. Phytopathology 112(11):2449–2461

    CAS  PubMed  Google Scholar 

  36. Liu L, **e J, Cheng J, Fu Y, Li G, Yi X, Jiang D (2014) Fungal negative-stranded RNA virus that is related to bornaviruses and nyaviruses. Proc Natl Acad Sci U S A 111:12205–12210

    CAS  PubMed  PubMed Central  Google Scholar 

  37. **ao X, Cheng J, Tang J, Fu Y, Jiang D, Baker TS, Ghabrial SA, **e J (2014) A novel partitivirus that confers hypovirulence on plant pathogenic fungi. J Virol 88:10120–10133

    PubMed  PubMed Central  Google Scholar 

  38. Wang M, Wang Y, Sun X, Cheng J, Fu Y, Liu H, Jiang D, Ghabrial SA, **e J (2015) Characterization of a novel megabirnavirus from Sclerotinia sclerotiorum reveals horizontal gene transfer from single-stranded RNA virus to double-stranded RNA virus. J Virol 89:8567–8579

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu L, Wang Q, Cheng J, Fu Y, Jiang D, **e J (2015) Molecular characterization of a bipartite double-stranded RNA virus and its satellite-like RNA co-infecting the phytopathogenic fungus Sclerotinia sclerotiorum. Front Microbiol 6:406

    PubMed  PubMed Central  Google Scholar 

  40. Mu F, Jia J, Xue Y, Jiang D, Fu Y, Cheng J, Lin Y, **e J (2021) Characterization of a novel botoulivirus isolated from the phytopathogenic fungus Sclerotinia sclerotiorum. Arch Virol 166:2859–2863

    CAS  PubMed  Google Scholar 

  41. Yang D, Wu M, Zhang J, Chen W, Li G, Yang L (2018) Sclerotinia minor Endornavirus 1, a novel pathogenicity debilitation-associated mycovirus with a wide spectrum of horizontal transmissibility. Viruses 10:589

    PubMed  PubMed Central  Google Scholar 

  42. Azhar A, Mu F, Huang H, Cheng J, Fu Y, Hamid MR, Jiang D, **e J (2019) A novel RNA virus related to Sobemoviruses confers hypovirulence on the phytopathogenic fungus Sclerotinia sclerotiorum. Viruses 11:759

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu S, Cheng J, Fu Y, Chen T, Jiang D, Ghabrial SA, **e J (2017) Virus-mediated suppression of host non-self recognition facilitates horizontal transmission of heterologous viruses. PLoS Pathog 13:e1006234

    PubMed  PubMed Central  Google Scholar 

  44. Zhang L, Fu Y, **e J, Jiang D, Li G, Yi X (2009) A novel virus that infecting hypovirulent strain XG36-1 of plant fungal pathogen Sclerotinia sclerotiorum. Virol J 6:96

    PubMed  PubMed Central  Google Scholar 

  45. Li G-Q, Huang HC, Laroche A, Acharya SN (2003) Occurrence and characterization of hypovirulence in the tan sclerotial isolate S10 of Sclerotinia sclerotiorum. Mycol Res 107:1350–1360

    CAS  PubMed  Google Scholar 

  46. Zhang Y, Gao J, Li Y (2022) Diversity of mycoviruses in edible fungi. Virus Genes 58:377–391

    CAS  PubMed  Google Scholar 

  47. Melzer M, Boland G (1996) Transmissible hypovirulence in Sclerotinia minor. Can J Plant Pathol 18:19–28

    CAS  Google Scholar 

  48. Zhou T, Boland GJ (1997) Hypovirulence and double-stranded RNA in Sclerotinia homoeocarpa. Phytopathology 87:147–153

    CAS  PubMed  Google Scholar 

  49. Zhou T, Boland GJ (1998) Suppression of dollar spot by hypovirulent isolates of Sclerotinia homoeocarpa. Phytopathology 88:788–794

    CAS  PubMed  Google Scholar 

  50. Khan HA, Shamsi W, Jamal A, Javaied M, Sadiq M, Fatma T, Ahmed A, Arshad M, Waseem M, Babar S, Dogar MM, Virk N, Janjua HA, Kondo H, Suzuki N, Bhatti MF (2021) Assessment of mycoviral diversity in Pakistani fungal isolates revealed infection by 11 novel viruses of a single strain of Fusarium mangiferae isolate SP1. J Gen Virol 102:001690

    CAS  Google Scholar 

  51. Khan HA, Telengech P, Kondo H, Bhatti MF, Suzuki N (2022) Mycovirus hunting revealed the presence of diverse viruses in a single isolate of the phytopathogenic fungus Diplodia seriata From Pakistan. Front Cell Infect Microbiol 12:913619

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kipkemboi TP (2021) Molecular and biological properties of diverse fungal and plant partitiviruses. Front Microbiol 26:1064

    Google Scholar 

  53. Huang H (1981) Tan sclerotia of Sclerotinia sclerotiorum. Can J Plant Pathol 24:18

    Google Scholar 

  54. Huang H (1983) Pathogenicity and survival of the tan-sclerotial strain of Sclerotinia sclerotiorum. Can J Plant Pathol 5:245–247

    Google Scholar 

  55. Huang H (1985) Factors affecting myceliogenic germination of sclerotia of Sclerotinia sclerotiorum. Phytopathology 75:433–437

    Google Scholar 

  56. Boland G, Mould M, Robb J (1993) Ultrastructure of a hypovirulent isolate of Sclerotinia sclerotiorum containing double-stranded RNA. Physiol Mol Plant Pathol 43:21–32

    Google Scholar 

  57. Zhou T, Boland GJ (1999) Mycelial growth and production of oxalic acid by virulent and hypovirulent isolates of Sclerotinia sclerotiorum. Can J Plant Pathol 21:93–99

    CAS  Google Scholar 

  58. Melzer MS, Ikeda SS, Boland GJ (2002) Interspecific transmission of double-stranded RNA and hypovirulence from Sclerotinia sclerotiorum to S. minor. Phytopathology 92:780–784

    CAS  PubMed  Google Scholar 

  59. Khan HA, Nerva L, Bhatti MF (2023) The good, the bad and the cryptic: the multifaceted roles of mycoviruses and their potential applications for a sustainable agriculture. Virology 585:259–269

    CAS  PubMed  Google Scholar 

  60. Herrero N, Duenas E, Quesada-Moraga E, Zabalgogeazcoa I (2012) Prevalence and diversity of viruses in the entomopathogenic fungus Beauveria bassiana. Appl Environ Microbiol 78:8523–8530

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Grogan HM, Adie BA, Gaze RH, Challen MP, Mills PR (2003) Double-stranded RNA elements associated with the MVX disease of Agaricus bisporus. Mycol Res 107:147–154

    CAS  PubMed  Google Scholar 

  62. Osaki H, Sasaki A, Nomiyama K, Tomioka K (2016) Multiple virus infection in a single strain of Fusarium poae shown by deep sequencing. Virus Genes 52:835–847

    CAS  PubMed  Google Scholar 

  63. Cessna SG, Sears VE, Dickman MB, Low PS (2000) Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 12:2191–2200

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Williams B, Kabbage M, Kim HJ, Britt R, Dickman MB (2011) Tip** the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog 7:e1002107

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Li H, Fu Y, Jiang D, Li G, Ghabrial SA, Yi X (2008) Down-regulation of Sclerotinia sclerotiorum gene expression in response to infection with Sclerotinia sclerotiorum debilitation-associated RNA virus. Virus Res 135:95–106

    CAS  PubMed  Google Scholar 

  66. Huang Y, **e X, Yang L, Zhang J, Li G, Jiang D (2011) Susceptibility of Sclerotinia sclerotiorum strains different in oxalate production to infection by the mycoparasite Coniothyrium minitans. World J Microbiol Biotechnol 27:2799–2805

    CAS  Google Scholar 

  67. Hong Y, Dover SL, Cole TE, Brasier CM, Buck KW (1999) Multiple mitochondrial viruses in an isolate of the Dutch Elm disease fungus Ophiostoma novo-ulmi. Virology 258:118–127

    CAS  PubMed  Google Scholar 

  68. Mu F, Li B, Cheng S, Jia J, Jiang D, Fu Y, Cheng J, Lin Y, Chen T, **e J (2021) Nine viruses from eight lineages exhibiting new evolutionary modes that co-infect a hypovirulent phytopathogenic fungus. PLoS Pathog 17:e1009823

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Jia J, Fu Y, Jiang D, Mu F, Cheng J, Lin Y, Li B, Marzano SL, **e J (2021) Interannual dynamics, diversity and evolution of the virome in Sclerotinia sclerotiorum from a single crop field. Virus Evol 7:veab032

    PubMed  PubMed Central  Google Scholar 

  70. Dietzgen RG, Kondo H, Goodin MM, Kurath G, Vasilakis N (2017) The family Rhabdoviridae: mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins. Virus Res 227:158–170

    CAS  PubMed  Google Scholar 

  71. Brown JC, Newcomb WW, Wertz GW (2010) Helical virus structure: the case of the rhabdovirus bullet. Viruses 2(4):995–1001

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Shahi S, Eusebio-Cope A, Kondo H, Hillman BI, Suzuki N (2019) Investigation of host range of and host defense against a mitochondrially replicating mitovirus. J Virol 93:e01503–e01518

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang Q, Cheng S, **ao X, Cheng J, Fu Y, Chen T, Jiang D, **e J (2019) Discovery of two mycoviruses by high-throughput sequencing and assembly of mycovirus-derived small silencing RNAs from a hypovirulent strain of Sclerotinia sclerotiorum. Front Microbiol 10:1415

    PubMed  PubMed Central  Google Scholar 

  74. Liang W, Lu Z, Duan J, Jiang D, **e J, Cheng J, Fu Y, Chen T, Li B, Yu X (2022) A novel alphahypovirus that infects the fungal plant pathogen Sclerotinia sclerotiorum. Arch Virol 167:213–217

    CAS  PubMed  Google Scholar 

  75. Nerva L, Vigani G, Di Silvestre D, Ciuffo M, Forgia M, Chitarra W, Turina M (2019) Biological and molecular characterization of Chenopodium quinoa mitovirus 1 reveals a distinct small RNA response compared to those of cytoplasmic RNA viruses. J Virol 93:e01998–e01918

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang J, Ni Y, Liu X, Zhao H, **ao Y, **ao X, Li S, Liu H (2021) Divergent RNA viruses in Macrophomina phaseolina exhibit potential as virocontrol agents. Virus. Evolution 7:veaa095

    Google Scholar 

  77. Jiang D, Fu Y, Guoqing L, Ghabrial SA (2013) Chapter eight - viruses of the plant pathogenic fungus Sclerotinia sclerotiorum. In: Ghabrial SA (ed) Advances in Virus Research. Academic Press, pp 215–248

    Google Scholar 

  78. Nibert ML, Ghabrial SA, Maiss E, Lesker T, Vainio EJ, Jiang D, Suzuki N (2014) Taxonomic reorganization of family Partitiviridae and other recent progress in partitivirus research. Virus Res 188:128–141

    CAS  PubMed  Google Scholar 

  79. Velasco L, López-Herrera C, Cretazzo E (2020) Two novel partitiviruses that accumulate differentially in Rosellinia necatrix and Entoleuca sp. infecting avocado. Virus Res 285:198020

    CAS  PubMed  Google Scholar 

  80. Lerer V, Shlezinger N (2022) Inseparable companions: fungal viruses as regulators of fungal fitness and host adaptation. Front Cell Infect Microbiol 12:1020608

    PubMed  PubMed Central  Google Scholar 

  81. Urayama SI, Doi N, Kondo F, Chiba Y, Takaki Y, Hirai M, Minegishi Y, Hagiwara D, Nunoura T (2020) Diverged and active partitiviruses in lichen. Front Microbiol 11:561344

    PubMed  PubMed Central  Google Scholar 

  82. Liu H, Fu Y, **e J, Cheng J, Ghabrial SA, Li G, Peng Y, Yi X, Jiang D (2012) Evolutionary genomics of mycovirus-related dsRNA viruses reveals cross-family horizontal gene transfer and evolution of diverse viral lineages. BMC Evol Biol 12:91

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Nibert ML, Woods KM, Upton SJ, Ghabrial SA (2009) Cryspovirus: a new genus of protozoan viruses in the family Partitiviridae. Arch Virol 154:1959–1965

    CAS  PubMed  Google Scholar 

  84. Lau SKP, Lo GCS, Chow FWN, Fan RYY, Cai JJ, Yuen KY, Woo PCY (2018) Novel partitivirus enhances virulence of and causes aberrant gene expression in Talaromyces marneffei. mBio 9:e00947–e00918

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhu JZ, Guo J, Hu Z, Zhang XT, Li XG, Zhong J (2021) A novel partitivirus that confer hypovirulence to the plant pathogenic fungus Colletotrichum liriopes. Front Microbiol 12:653809

    PubMed  PubMed Central  Google Scholar 

  86. Wang H, Salaipeth L, Miyazaki N, Suzuki N, Okamoto K (2023) Capsid structure of a fungal dsRNA megabirnavirus reveals its previously unidentified surface architecture. PLoS Pathog 19:e1011162

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Cottet L, Potgieter CA, Castro ME, Castillo A (2019) Molecular characterization of a new botybirnavirus that infects Botrytis cinerea. Arch Virol 164:1479–1483

    CAS  PubMed  Google Scholar 

  88. Zhai L, Yang M, Zhang M, Hong N, Wang G (2019) Characterization of a Botybirnavirus conferring hypovirulence in the phytopathogenic fungus Botryosphaeria dothidea. Viruses 11:266

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wu M, ** F, Zhang J, Yang L, Jiang D, Li G (2012) Characterization of a novel bipartite double-stranded RNA mycovirus conferring hypovirulence in the phytopathogenic fungus Botrytis porri. J Virol 86:6605–6619

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Amselem J, Cuomo CA, van Kan JA, Viaud M, Benito EP, Couloux A, Coutinho PM, de Vries RP, Dyer PS, Fillinger S, Fournier E, Gout L, Hahn M, Kohn L, Lapalu N, Plummer KM, Pradier JM, Quevillon E, Sharon A et al (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7:e1002230

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Shuai S, Zheng H, Ding H, Wang Y, Li J, Liu F, Liu F, An H, Fang S, Zhang S, Deng Q (2022) Molecular characterization of a novel botourmiavirus with inverted complementary termini from the rice blast fungus Magnaporthe oryzae isolate HF04. Arch Virol 167:1899–1903

    CAS  PubMed  Google Scholar 

  92. Vieira AC, Lopes IS, Fonseca PLC, Olmo RP, Bittencourt F, de Vasconcelos LM, Pirovani CP, Gaiotto FA, Aguiar E (2022) Expanding the environmental virome: infection profile in a native rainforest tree species. Front Microbiol 13:874319

    PubMed  PubMed Central  Google Scholar 

  93. Wang Q, Mu F, **e J, Cheng J, Fu Y, Jiang D (2020) A single ssRNA segment encoding RdRp is sufficient for replication, infection, and transmission of ourmia-like virus in fungi. Front Microbiol 11:379

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Feng C, Feng J, Wang Z, Pedersen C, Wang X, Saleem H, Domier L, Marzano SL (2021) Identification of the viral determinant of hypovirulence and host range in Sclerotiniaceae of a genomovirus reconstructed from the plant metagenome. J Virol 95:e0026421

    PubMed  Google Scholar 

  95. Varsani A, Krupovic M (2021) Family Genomoviridae: 2021 taxonomy update. Arch Virol 166:2911–2926

    CAS  PubMed  Google Scholar 

  96. Kraberger S, Stainton D, Dayaram A, Zawar-Reza P, Gomez C, Harding JS, Varsani A (2013) Discovery of Sclerotinia sclerotiorum hypovirulence-associated virus-1 in urban river sediments of Heathcote and Styx rivers in Christchurch City, New Zealand. Genome Announc 1:e00559–e00513

    PubMed  PubMed Central  Google Scholar 

  97. Pedersen CJ, Marzano S-YL (2022) Characterization of transcriptional responses to Genomovirus infection of the white mold fungus, Sclerotinia sclerotiorum. Viruses 14(9):1892. https://doi.org/10.3390/v14091892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Valverde RA, Khalifa ME, Okada R, Fukuhara T, Sabanadzovic S, Ictv Report C (2019) ICTV virus taxonomy profile: Endornaviridae. J Gen Virol 100:1204–1205

    CAS  PubMed  Google Scholar 

  99. Okada R, Kiyota E, Sabanadzovic S, Moriyama H, Fukuhara T, Saha P, Roossinck MJ, Severin A, Valverde RA (2011) Bell pepper endornavirus: molecular and biological properties, and occurrence in the genus Capsicum. J Gen Virol 92:2664–2673

    CAS  PubMed  Google Scholar 

  100. Stielow B, Klenk HP, Menzel W (2011) Complete genome sequence of the first endornavirus from the ascocarp of the ectomycorrhizal fungus Tuber aestivum Vittad. Arch Virol 156:343–345

    CAS  PubMed  Google Scholar 

  101. Luo X, Jiang D, **e J, Jia J, Duan J, Cheng J, Fu Y, Chen T, Yu X, Li B, Lin Y (2022) Genome characterization and phylogenetic analysis of a novel endornavirus that infects fungal pathogen Sclerotinia sclerotiorum. Viruses 14:456

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Sõmera M, Sarmiento C, Truve E (2015) Overview on Sobemoviruses and a proposal for the creation of the Family Sobemoviridae. Viruses 7:3076–3115

    PubMed  PubMed Central  Google Scholar 

  103. Tamm T, Truve E (2000) Sobemoviruses. J Virol 74:6231–6241

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wolf YI, Kazlauskas D, Iranzo J, Lucia-Sanz A, Kuhn JH, Krupovic M, Dolja VV, Koonin EV (2018) Origins and evolution of the global RNA virome. mBio 9:e02329–e02318

    PubMed  PubMed Central  Google Scholar 

  105. **ao J, Wang X, Zheng Z, Wu Y, Wang Z, Li H, Li P (2023) Molecular characterization of a novel deltaflexivirus infecting the edible fungus Pleurotus ostreatus. Research Square

    Google Scholar 

  106. Martelli GP, Adams MJ, Kreuze JF, Dolja VV (2007) Family Flexiviridae: a case study in virion and genome plasticity. Annu Rev Phytopathol 45:73–100

    CAS  PubMed  Google Scholar 

  107. Glass NL, Dementhon K (2006) Non-self recognition and programmed cell death in filamentous fungi. Curr Opin Microbiol 9:553–558

    CAS  PubMed  Google Scholar 

  108. Brosche M, Blomster T, Salojarvi J, Cui F, Sipari N, Leppala J, Lamminmaki A, Tomai G, Narayanasamy S, Reddy RA, Keinanen M, Overmyer K, Kangasjarvi J (2014) Transcriptomics and functional genomics of ROS-induced cell death regulation by RADICAL-INDUCED CELL DEATH1. PLoS Genet 10:e1004112

    PubMed  PubMed Central  Google Scholar 

  109. Ding F, Cheng J, Fu Y, Chen T, Li B, Jiang D, **e J (2019) Early transcriptional response to DNA virus infection in Sclerotinia sclerotiorum. Viruses 11:278

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Qu Z, Zhao H, Zhang H, Wang Q, Yao Y, Cheng J, Lin Y, **e J, Fu Y, Jiang D (2020) Bio-priming with a hypovirulent phytopathogenic fungus enhances the connection and strength of microbial interaction network in rapeseed. NPJ Biofilms Microbiomes 6:45

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Gao Z, Wu J, Jiang D, **e J, Cheng J, Lin Y (2020) ORF iota of mycovirus SsNSRV-1 is associated with debilitating symptoms of Sclerotinia sclerotiorum. Viruses 12:456

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    CAS  PubMed  Google Scholar 

  113. Voinnet O (2001) RNA silencing as a plant immune system against viruses. Trends Genet 17:449–459

    CAS  PubMed  Google Scholar 

  114. Neupane A, Feng C, Mochama PK, Saleem H, Lee Marzano SY (2019) Roles of argonautes and dicers on Sclerotinia sclerotiorum antiviral RNA silencing. Front Plant Sci 10:976

    PubMed  PubMed Central  Google Scholar 

  115. Segers GC, Zhang X, Deng F, Sun Q, Nuss DL (2007) Evidence that RNA silencing functions as an antiviral defense mechanism in fungi. Proc Natl Acad Sci U S A 104:12902–12906

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Mochama P, Jadhav P, Neupane A, Lee Marzano SY (2018) Mycoviruses as triggers and targets of RNA silencing in white mold fungus Sclerotinia sclerotiorum. Viruses 10:214

    PubMed  PubMed Central  Google Scholar 

  117. Brauer VS, Rezende CP, Pessoni AM, De Paula RG, Rangappa KS, Nayaka SC, Gupta VK, Almeida F (2019) Antifungal agents in agriculture: friends and foes of public health. Biomolecules 9:521

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Bonfante P, Desiro A (2017) Who lives in a fungus? The diversity, origins and functions of fungal endobacteria living in Mucoromycota. ISME J 11:1727–1735

    PubMed  PubMed Central  Google Scholar 

  119. Hoffman MT, Arnold AE (2010) Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl Environ Microbiol 76:4063–4075

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Hoover K, Grove M, Gardner M, Hughes DP, McNeil J, Slavicek J (2011) A gene for an extended phenotype. Science 333:1401

    CAS  PubMed  Google Scholar 

  121. Coyle MC, Elya CN, Bronski M, Eisen MB (2018) Entomophthovirus: an insect-derived iflavirus that infects a behavior manipulating fungal pathogen of dipterans. bioRxiv:371526

  122. Marquez LM, Redman RS, Rodriguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–515

    CAS  PubMed  Google Scholar 

  123. Shah UA, Kotta-Loizou I, Fitt BDL, Coutts RHA (2020) Mycovirus-induced hypervirulence of Leptosphaeria biglobosa enhances systemic acquired resistance to Leptosphaeria maculans in Brassica napus. Mol Plant-Microbe Interact 33:98–107

    CAS  PubMed  Google Scholar 

  124. Thomas MB, Willis A (1998) Biocontrol—risky but necessary? Trends Ecol Evol 13:325–329

    CAS  PubMed  Google Scholar 

  125. El-Mougy N, Abdel-Kader M (2008) Long-term activity of bio-priming seed treatment for biological control of faba bean root rot pathogens. Australas Plant Pathol 37:464–471

    Google Scholar 

  126. Raj SN, Shetty N, Shetty H (2004) Seed bio-priming with Pseudomonas fluorescens isolates enhances growth of pearl millet plants and induces resistance against downy mildew. Int J Pest Manag 50:41–48

    Google Scholar 

  127. **e J, Jiang D (2014) New insights into mycoviruses and exploration for the biological control of crop fungal diseases. Annu Rev Phytopathol 52:45–68

    CAS  PubMed  Google Scholar 

  128. García-Pedrajas MD, Cañizares MC, Sarmiento-Villamil JL, Jacquat AG, Dambolena JS (2019) Mycoviruses in biological control: from basic research to field implementation. Phytopathology 109:1828–1839

    PubMed  Google Scholar 

  129. Zhang H, **e J, Fu Y, Cheng J, Qu Z, Zhao Z, Cheng S, Chen T, Li B, Wang Q, Liu X, Tian B, Collinge DB, Jiang D (2020) A 2-kb mycovirus converts a pathogenic fungus into a beneficial endophyte for Brassica protection and yield enhancement. Mol Plant 13:1420–1433

    CAS  PubMed  Google Scholar 

  130. Liu S, **e J, Cheng J, Li B, Chen T, Fu Y, Li G, Wang M, ** H, Wan H (2016) Fungal DNA virus infects a mycophagous insect and utilizes it as a transmission vector. Proc Natl Acad Sci 113:12803–12808

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Das S, Alam MM, Zhang R, Hisano S, Suzuki N (2021) Proof of concept of the Yadokari Nature: a capsidless replicase-encoding but replication-dependent positive-sense single-stranded RNA virus hosted by an unrelated double-stranded RNA virus. J Virol 95:e0046721

    PubMed  Google Scholar 

  132. Jia J, Mu F, Fu Y, Cheng J, Lin Y, Li B, Jiang D, **e J (2022) A capsidless virus is trans-encapsidated by a bisegmented Botybirnavirus. J Virol 96:e0029622

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National University of Sciences and Technology (NUST), Islamabad, Pakistan, for providing research facilities.

Author information

Authors and Affiliations

Authors

Contributions

HAK: conceptualization; HAK, M.M, MFB: data collection and writing — original draft, HAK: review and edit of the original draft.

Corresponding author

Correspondence to Haris Ahmed Khan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Celia Maria de Almeida Soares

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H.A., Mukhtar, M. & Bhatti, M.F. Mycovirus-induced hypovirulence in notorious fungi Sclerotinia: a comprehensive review. Braz J Microbiol 54, 1459–1478 (2023). https://doi.org/10.1007/s42770-023-01073-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01073-4

Keywords

Navigation