Log in

Immunomodulatory effects of different strains of Lactococcus lactis in DSS-induced colitis

  • Veterinary Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Inflammatory bowel diseases (IBD) are gastrointestinal disorders characterized by a breakdown in intestinal homeostasis by inflammatory immune responses to luminal antigens. Novel strategies for ameliorating IBD have been proposed in many studies using animal models. Our group has demonstrated that administration of Lactococcus lactis NCDO 2118 can improve clinical parameters of colitis induced by oral administration of dextran sulphate sodium (DSS). However, it is not clear whether other strains of L. lactis can yield the same effect. The objective of present study was to analyze the effects of three different L. lactis strains (NCDO2118, IL1403 and MG1363) in the development of DSS-induced colitis in C57BL/6 mice. Acute colitis was induced in C57/BL6 mice by the administration of 2% DSS during 7 consecutive days. Body weight loss and shortening of colon length were observed in DSS-treated mice, and none of L. lactis strains had an impact in these clinical signs of colitis. On the other hand, all strains improved the global macroscopical disease index and prevented goblet cells depletion as well as the increase of intestinal permeability. TNF-α production was reduced in gut mucosa of L. lactis DSS-treated mice indicating a modulation of a critical pro-inflammatory response by all strains tested. However, only L. lactis NCDO2118 and MG1363 induced a higher frequency of CD11c+CD11bCD103+ tolerogenic dendritic cells in lymphoid organs of mice at steady state. We conclude that all tested strains of L. lactis improved the clinical scores and parameters of colitis, which confirm their anti-inflammatory properties in this model of colitis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Khor B, Gardet A, Xavier RJ (2011) Genetics and pathogenesis of inflammatory bowel disease. Nature [Internet]. 474:307–17. http://www.nature.com/articles/nature10209

  2. De Moreno De Leblanc A, Del Carmen S, Chatel JM, Miyoshi A, Azevedo V, Langella P et al (2015) Current review of genetically modified lactic acid bacteria for the prevention and treatment of colitis using murine models. Gastroenterol Res Pract 2015. https://doi.org/10.1155/2015/146972

  3. Melgar S, Bjursell M, Gerdin AK, Svensson L, Michaëlsson E, Bohlooly-Y M (2007) Mice with experimental colitis show an altered metabolism with decreased metabolic rate. Am J Physiol - Gastrointest Liver Physiol 292:165–172

    Article  Google Scholar 

  4. Basso PJ, Fonseca MTC, Bonfá G, Alves VBF, Sales-Campos H, Nardini V et al (2014) Association among genetic predisposition, gut microbiota, and host immune response in the etiopathogenesis of inflammatory bowel disease. Brazilian J Med Biol Res 47:727–737

    Article  CAS  Google Scholar 

  5. Mowat AMI (2003) Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3:331–341

    Article  CAS  PubMed  Google Scholar 

  6. Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M (2015) Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol 27:1–19

    Google Scholar 

  7. Melgar S, Karlsson A, Michaëlsson E (2005) Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: Correlation between symptoms and inflammation. Am J Physiol - Gastrointest Liver Physiol 288:1328–1338

    Article  Google Scholar 

  8. Okayasu ISA (1990) Reliable experimental acute and chronic 694–702

  9. Abraham BP, Quigley EMM (2017) Probiotics in inflammatory bowel disease. Gastroenterol Clin North Am [Internet]. Elsevier Inc;46:769–82. https://doi.org/10.1016/j.gtc.2017.08.003

  10. FAO/WHO (2002) Guidelines for the evaluation of probiotics in food 1–11

  11. Ishida T, Yokota A, Umezawa Y, Toda T, Yamada K (2005) Identification and characterization of lactococcal and Acetobacter strains isolated from traditional Caucasusian fermented milk. J Nutr Sci Vitaminol (Tokyo) 51:187–193

    Article  CAS  PubMed  Google Scholar 

  12. Watanabe T, Nishio H, Tanigawa T, Yamagami H, Okazaki H, Watanabe K et al (2009) Probiotic Lactobacillus casei strain Shirota prevents indomethacin-induced small intestinal injury: Involvement of lactic acid. Am J Physiol - Gastrointest Liver Physiol 297:506–513

    Article  Google Scholar 

  13. Tang Y, Wu Y, Huang Z, Dong W, Deng Y, Wang F et al (2017) Administration of probiotic mixture DM#1 ameliorated 5-fluorouracil–induced intestinal mucositis and dysbiosis in rats. Nutrition [Internet]. Elsevier Inc. 33:96–104. https://doi.org/10.1016/j.nut.2016.05.003

  14. Zhang F, Li Y, Wang X, Wang S, Bi D (2019) The Impact of lactobacillus plantarum on the gut microbiota of mice with DSS-induced colitis. Biomed Res Int Hindawi 2019. https://doi.org/10.1155/2019/3921315

  15. Chen Y, ** Y, Stanton C, Paul Ross R, Zhao J, Zhang H et al (2020) Alleviation effects of Bifidobacterium breve on DSS-induced colitis depends on intestinal tract barrier maintenance and gut microbiota modulation. Eur J Nutr [Internet]. Springer Berlin Heidelberg. https://doi.org/10.1007/s00394-020-02252-x

  16. Berlec A, Perše M, Ravnikar M, Lunder M, Erman A, Cerar A et al (2017) Dextran sulphate sodium colitis in C57BL/6J mice is alleviated by Lactococcus lactis and worsened by the neutralization of Tumor necrosis Factor α. Int Immunopharmacol 43:219–226

    Article  CAS  PubMed  Google Scholar 

  17. Papadimitriou K, Pot B, Tsakalidou E (2015) How microbes adapt to a diversity of food niches. Curr Opin Food Sci [Internet]. Elsevier Ltd;;2:29–35. https://doi.org/10.1016/j.cofs.2015.01.001

  18. Mancha-Agresti P, Drumond MM, Carmo FLR do, Santos MM, Santos JSC dos, Venanzi F et al (2017) A new broad range plasmid for DNA delivery in eukaryotic cells using lactic acid bacteria: in vitro and in vivo assays. Mol Ther - Methods Clin Dev [Internet]. Elsevier Ltd.;4:83–91. https://doi.org/10.1016/j.omtm.2016.12.005

  19. Donohue DC, Gueimonde M (2011) Some considerations for the safety of novel probiotic bacteria. Lact Acid Bact Microbiol Funct Asp Fourth Ed 423–38

  20. Song AAL, In LLA, Lim SHE, Rahim RA (2017) A review on Lactococcus lactis: from food to factory. Microb Cell Fact BioMed Central 16:1–15

    CAS  Google Scholar 

  21. Nishitani Y, Tanoue T, Yamada K, Ishida T, Yoshida M, Azuma T et al (2009) Lactococcus lactis subsp. cremoris FC alleviates symptoms of colitis induced by dextran sulfate sodium in mice. Int Immunopharmacol [Internet]. Elsevier B.V.;9:1444–51. https://doi.org/10.1016/j.intimp.2009.08.018

  22. Luerce TD, Gomes-Santos AC, Rocha CS, Moreira TG, Cruz DN, Lemos L et al (2014) Anti-inflammatory effects of Lactococcus lactis NCDO 2118 during the remission period of chemically induced colitis. Gut Pathog 6:1–11

    Article  Google Scholar 

  23. Gusmao-Silva G, Aguiar SLF, Miranda MCG, Guimarães MA, Alves JL, Vieira AT et al (2020) Hsp65-producing lactococcocus lactis prevents antigen-induced arthritis in mice. Front Immunol 11:1–15

    Article  Google Scholar 

  24. Stiles ME, Holzapfel WH (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36:1–29

    Article  CAS  PubMed  Google Scholar 

  25. de Moreno de LeBlanc A, del Carmen S, Zurita-Turk M, Santos Rocha C, van de Guchte M, Azevedo V et al (2011) Importance of IL-10 modulation by probiotic microorganisms in gastrointestinal inflammatory diseases. ISRN Gastroenterol 2011:1–11

  26. Oliveira LC, Saraiva TDL, Soares SC, Ramos RTJ, Sá PHCG, Carneiro AR et al (2014) Genome Sequence of Lactococcus lactis subsp. lactis NCDO 2118, a GABA-Producing Strain. Genome Announc 2:9–10

    Article  Google Scholar 

  27. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J et al (2001) The complete genome sequence of the lactic acid bacterium lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wegmann U, O’Connell-Motherway M, Zomer A, Buist G, Shearman C, Canchaya C et al (2007) Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 189:3256–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cooper HS, Murthy SN, Shah RS, Sedergran DJ (1993) Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest [Internet]. 69:238—249. http://europepmc.org/abstract/MED/8350599

  30. Diniz SOF, Barbosa AJA, Araújo ID, Nelson DL, da Machado LAS, Filho MB et al (2005) Assessment of bacterial translocation in obstructive jaundice using Tc-99m Escherichia coli. Brazilian Arch Biol Technol 48:45–9

    Article  Google Scholar 

  31. Maioli TU, De Melo SB, Dias MN, Paiva NC, Cardoso VN, Fernandes SO et al (2014) Pretreatment with Saccharomyces boulardii does not prevent the experimental mucositis in Swiss mice. J Negat Results Biomed 13:1–8

    Article  Google Scholar 

  32. Generoso SDV, Rodrigues NM, Trindade LM, Paiva NC, Cardoso VN, Carneiro CM et al (2015) Dietary supplementation with omega-3 fatty acid attenuates 5-fluorouracil induced mucositis in mice. Lipids Health Dis [Internet]. Lipids in Health and Disease.14:1–10. https://doi.org/10.1186/s12944-015-0052-z

  33. McCafferty DM, Sihota E, Muscara M, Wallace JL, Sharkey KA, Kubes P (2000) Spontaneously develo** chronic colitis in IL-10/iNOS double-deficient mice. Am J Physiol - Gastrointest Liver Physiol 279:90–99

    Article  Google Scholar 

  34. De Matos OG, Amaral SS, Pereira Da Silva PEM, Perez DA, Alvarenga DM, Ferreira AVM et al (2012) Dietary supplementation with omega-3-pufa-rich fish oil reduces signs of food allergy in ovalbumin-sensitized mice. Clin Dev Immunol 2012. https://doi.org/10.1155/2012/236564

  35. Gomes-Santos AC, Moreira TG, Castro-Junior AB, Horta BC, Lemos L, Cruz DN et al (2012) New insights into the immunological changes in IL-10-deficient mice during the course of spontaneous inflammation in the gut mucosa. Clin Dev Immunol 2012. https://doi.org/10.1155/2012/560817

  36. Herzenberg LA, Tung J, Moore WA, Herzenberg LA, Parks DR (2006) Interpreting flow cytometry data: a guide for the perplexed - Supplementary Information. Nat Immunol 7:681–685

    Article  CAS  PubMed  Google Scholar 

  37. Poritz LS, Garver KI, Green C, Fitzpatrick L, Ruggiero F, Koltun WA (2007) Loss of the tight junction protein ZO-1 in Dextran sulfate sodium induced colitis. J Surg Res 140:12–19

    Article  CAS  PubMed  Google Scholar 

  38. O’Sullivan DJ (2001) Screening of intestinal microflora for effective probiotic bacteria. J Agric Food Chem 49:1751–1760

    Article  PubMed  Google Scholar 

  39. Brandtzaeg P (1998) Development and basic mechanisms of human gut immunity. Nutr Rev 56

  40. Muzaki ARBM, Tetlak P, Sheng J, Loh SC, Setiagani YA, Poidinger M et al (2016) Intestinal CD103+ CD11b- dendritic cells restrain colitis via IFN-γ-induced anti-inflammatory response in epithelial cells. Mucosal Immunol 9:336–351

    Article  CAS  PubMed  Google Scholar 

  41. Annacker O, Coombes JL, Malmstrom V, Uhlig HH, Bourne T, Johansson-Lindbom B et al (2005) Essential role for CD103 in the T cell-mediated regulation of experimental colitis. J Exp Med 202:1051–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Coombes JL, Siddiqui KRR, Arancibia-Cárcamo CV, Hall J, Sun CM, Belkaid Y et al (2007) A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β -and retinoic acid-dependent mechanism. J Exp Med 204:1757–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mercadante ACT, Perobelli SM, Alves APG, Gonçalves-Silva T, Mello W, Gomes-Santos AC et al (2014) Oral combined therapy with probiotics and alloantigen induces B Cell–dependent long-lasting specific tolerance. J Immunol 192:1928–1937

    Article  CAS  PubMed  Google Scholar 

  44. Forkel M, Mjösberg J (2016) Dysregulation of group 3 Innate lymphoid cells in the pathogenesis of inflammatory bowel disease. Curr Allergy Asthma Rep [Internet]. Curr Allergy Asthma Rep 16. https://doi.org/10.1007/s11882-016-0652-3

  45. Kühn R, Löhler J, Rennick D, Rajewsky K, Müller W (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75:263–274

    Article  PubMed  Google Scholar 

  46. Mosser DM, Edwards JP (2009) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    Article  Google Scholar 

  47. Aziz M, Holodick NE, Rothstein TL, Wang P (2015) The Role of B-1 Cells in Inflammation. Immunol Res 63:153–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B et al (2014) Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514

    Article  PubMed  Google Scholar 

  49. Koelink PJ, Bloemendaal FM, Li B, Westera L, Vogels EWM, van Roest M, Gloudemans AK, van’tWout AB, Korf H, Vermeire S, Te Velde AA, Ponsioen CY, D’Haens GR, Verbeek JS, Geiger TL, Wildenberg ME, van den Brink GR (2020) Anti-TNF therapy in IBD exerts its therapeutic effect through macrophage IL-10 signalling. Gut 69(6):1053–1063. https://doi.org/10.1136/gutjnl-2019-318264

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ilda Marçal de Souza and Hermes Oliveira for the excellent care of the animals.

Funding

This study was financially supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnologico), FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais), and PRPq-UFMG (Pró Reitoria de Pesquisa da UFMG), Brazil. Some of the authors are recipients of scholarships (J.L.A., L.L, M.C.C., A.C.G-S.) from CNPq and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), Brazil, and research fellowships (A.M.C.F., D.C.C., V.A., T.U.M.) from CNPq, Brazil.

Author information

Authors and Affiliations

Authors

Contributions

Experimental procedures were performed by JLA, LL, NMR, MCC, PAVB, VBP and MG. Data analysis was done by JLA, LL, NMR, PAVB, DCC, TUM and ACGS. Bacteria Strains were provided by AM, VAA and VBP. Manuscript writing was prepared by JLA and AMCF. Manuscript revision was performed by JLA and AMCF.

Corresponding authors

Correspondence to Juliana Lima Alves or Ana Maria Caetano Faria.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All authors consent to participate in this publication.

Consent for publication

All authors consent to publish the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Mariana X Byndloss

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, J.L., Lemos, L., Rodrigues, N.M. et al. Immunomodulatory effects of different strains of Lactococcus lactis in DSS-induced colitis. Braz J Microbiol 54, 1203–1215 (2023). https://doi.org/10.1007/s42770-023-00928-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-00928-0

Keywords

Navigation