Log in

Bacterial identification in cerebrospinal fluid of domestic species with neurologic signs: a retrospective case-series study in 136 animals (2005–2021)

  • Veterinary Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Central nervous system (CNS) infections comprise life-threatening clinical conditions in domestic species, and are commonly related to severe sequelae, disability, or high fatality rates. A set of bacterial pathogens have been identified in central nervous infections in livestock and companion animals, although the most of descriptions are restricted to case reports and a lack of comprehensive studies involving CNS-related bacterial infections have been focused on a great number of domestic species. In this scenario, we retrospectively investigated selected epidemiological data, clinical findings, bacteriological culture, and in vitro susceptibility patterns of 136 nonrepetitive neurologic cases in domestic species (2005–2021). Bacterial isolates were recovered from 25% (34/136) of the cerebrospinal fluid (CSF) sampled. The isolates were obtained from cattle (9/136 = 6.6%), dogs (7/136 = 5.1%), horses (6/136 = 4.4%), goats (3/136 = 2.2%), pigs (3/136 = 2.2%), sheep (3/136 = 2.2%), cats (2/136 = 1.5%), and asinine (1/136 = 0.7%). Among animals with bacterial isolation, Staphylococcus aureus (6/34 = 17.6%), Escherichia coli (5/34 = 14.7%), Staphylococcus beta-hemolytic (5/34 = 14.7%), and Trueperella pyogenes (3/34 = 8.8%) were predominant, in addition to a miscellaneous of other bacteria isolated in minor frequency, e.g., Corynebacterium pseudotuberculosis, Enterobacter cloacae, Mannheimia haemolytica, Pseudomonas aeruginosa, and Streptococcus equi subsp. equi. In vitro susceptibility tests of isolates revealed that amoxicillin/clavulanic acid (11/13 = 84.6%), cephalexin (9/11 = 81.8%), and florfenicol (9/12 = 75%) were the most effective antimicrobials. Conversely, isolates exhibited resistance mainly to tetracycline (6/10 = 60%), penicillin (6/11 = 54.5%), and trimethoprim/sulfamethoxazole (5/11 = 45.5%). Also, multidrug resistance to ≥ 3 classes of antimicrobials was found in 23.5% (8/34) strains. Data relative to the outcome was available in 79.4% (27/34) of animals that had bacterial isolation, and from these, the lethality rate was 92.6% (25/27). Incoordination (14/34 = 41.2%), recumbency (11/34 = 32.4%), apathy (10/34 = 29.4%), anorexia (9/34 = 26.5%), blindness (7/34 = 20.6%), seizure (6/34 = 17.6%), limb paresis (5/34 = 14.7%), head-pressing (4/34 = 11.8%), and nystagmus (3/34 = 8.8%) were the most frequent clinical signs. A variety of bacterial pathogens were identified in the CSF of domestic species showing neurologic signs, with a predominance of staphylococci, streptococci, and enterobacteria. High lethality of cases, poor in vitro efficacy of conventional antimicrobials, and a high in vitro multidrug resistance pattern of isolates were seen. Our results contribute to etiological characterization, antimicrobial resistance patterns, and clinical-epidemiological findings of bacterial infections in domestic species with neurological signs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Callanan J (2021) Meningitis, encephalitis, and encephalomyelitis in animals. Aiello, S. (Ed.) In: MSD Veterinary Manual. Merck & Co., Ney Jersey, USA. Available: https://www.msdvetmanual.com/nervous-system/meningitis,-encephalitis,-and-encephalomyelitis/meningitis,-encephalitis,-and-encephalomyelitis-in-animals

  2. Hertzsch R, Richter A (2022) Systematic review of the pharmacological evidence for the selection of antimicrobials in bacterial infections of the central nervous system in the dogs and cats. Front Vet Sci 8:1–17

    Article  Google Scholar 

  3. Giovane R, Lavender PD (2018) Central nervous system infections. Prim Care: Clin Off Pract 45:505–518

    Article  Google Scholar 

  4. Bystritsky RJ, Chow FC (2022) Infectious meningitis and encephalitis. Neurol Clin 40:77–91

    Article  PubMed  Google Scholar 

  5. Viu J, Monreal L, Jose-Cunilleras E, Cesarini C, Añor S, Armengou L (2012) Clinical findings in 10 foals with bacterial meningoencephalitis. Equine Vet J 44, suppl(41):100–104

    Article  Google Scholar 

  6. Carvalho PC, Eckstein C, de Moura LL, Heleno NVR, da Silva LA, Santos DO, Souza LR, Oliveira AR, Xavier RGC, Thompson M, Silva ROS, Santos RL (2022) Staphylococcus aureus-induced pyogranulomatous dermatitis, osteomyelitis, and meningitis with Splendore-Hoeppli reaction in a cat coinfected with the feline leukemia virus and Leishmania sp. Rev Bras Patol Anim 15:31–37

    Google Scholar 

  7. Salat J, Ruzek D (2020) Tick-borne encephalitis in domestic animals. Acta Virol 64:226–232

    Article  CAS  PubMed  Google Scholar 

  8. Elbert JA, Rissi DR (2022) Neuropathologic changes associated with systematic bacterial infection in 28 dogs. J Vet Diagn Invest 34:752–756

    Article  CAS  PubMed  Google Scholar 

  9. Messer JS, Wagner SO, Baumwart RD, Colitz CM (2008) A case of canine streptococcal meningoencephalitis diagnosed using universal bacterial polymerase chain reaction. J Anim Hosp Assoc 44:205–209

    Article  Google Scholar 

  10. Komatsu T, Yoshida E, Shigenaga A, Yasuie N, Uchiyama S, Takamura Y, Sugie K, Kimura K, Haritani M, Shibahara T (2021) Fatal suppurative meningoencephalitis caused by Klebsiella pneumoniae in two calves. J Vet Med Sci 83:1113–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ribeiro MG, Risseti RM, Bolaños CAD, Caffaro KA, Morais ACB, Lara GHB, Zamprogna TO, Paes AC, Listoni FJP, Franco MMF (2015) Trueperella pyogenes multispecies infections in domestic animals: a retrospective study of 144 cases (2002 to 2012). Vet Q 35:82–87

    Article  CAS  PubMed  Google Scholar 

  12. Messer JS, Kegge SJ, Cooper ES, Colitz CMH, Abramson CJ (2006) Meningoencephalitis caused by Pasteurella multocida in a cat. J Vet Intern Med 20:1033–1036

    Article  PubMed  Google Scholar 

  13. Cecco BS, Carossino M, Piero FD, Wakamatsu N, Mitchell MS, Fowlkes NW, Langohr IM (2021) Meningoencephalomyelitis in domestic cats: 3 cases of Pasteurella multocida infection and literature review. J Vet Diagn Invest 33:1156–1162

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang W, Cai M, Hu J, Zhang Z, Wang X, Chang X, Zhang F, Guo C, Wang X (2020) Mechanisms of blood-brain barrier disruption by an Escherichia coli from lambs with severe diarrhea and meningoencephalitis. Microb Pathog 147:e104288

    Article  Google Scholar 

  15. Wu CC, Chang YP (2015) Cerebral ventriculitis associated with otogenic meningoencephalitis in a dog. J Am Anim Hosp Associatinon 51:272–278

    Article  Google Scholar 

  16. Rupprecht CE, Mani RS, Mshelbwala PP, Recuenco SE, Ward MP (2022) Rabies in the Tropics. Emerg Trop Dis 9:28–39

  17. Iwanaga M, Imai N, Kamikawa A, Shimada K, Okura M, Takamatsu D, Ueda D, Nakayama M, Shibahara T (2022) Suppurative meningoencephalitis and perineuritis caused by Streptococcus gallolyticus in a Japanese black calf. J Vet Med Sci 84:53–58

    Article  CAS  PubMed  Google Scholar 

  18. Ribeiro MG, Morais ABC, Alves AC, Bolaños CAD, de Paula CL, Portilho FVRP, Nardi Júnior G, Lara GHB, Martins LSA, Moraes LS, Risseti RM, Guerra ST, Bello TS, Siqueira AK, Bertolini AB, Rodrigues CA, Paschoal NR, Almeida BO, Listoni FJP, Sánchez LFG, Paes AC (2022) Klebsiella-induced infections in domestic species: a case-series study in 697 animals (1997–2019). Braz J Microbiol 53:455–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Johnson PJ, Constantinescu GM (2000) Collection of cerebrospinal fluid of horses. Equine Vet Educ 12:7–12

    Article  Google Scholar 

  20. Rusbridge C (1997) Collection and interpretation of cerebrospinal fluid in cats and dogs. In Pract 19:322–331

    Article  Google Scholar 

  21. Quinn PJ, Markey BK, Leonard FC, Fitzpatrick ES, Fanning S, Hartigan PJ (2011) Veterinary microbiology and microbial disease, 2nd edn. Wiley-Blackwell, Chichester, West Sussex, UK

    Google Scholar 

  22. Clinical and Laboratory Standards Institute-CLSI (2020a) Performance standards for antimicrobial disk and dilution susceptibility test for bacteria isolated from animals (CLSI VET 015), 5th edn. Wayne, p 250

  23. Clinical and Laboratory Standards Institute-CLSI (2020b) Performance standards of antimicrobial susceptibility testing, 30th edn. Wayne, p 332

  24. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Kahlmeter HJFG, Liljequist BO, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–81

    Article  CAS  PubMed  Google Scholar 

  25. Gelman A, Jakulin A, Pittau MG, Su Y (2008) A weakly informative default prior distribution for logistic and other regression models. Ann Appl Stat 2:1360–1383

    Article  Google Scholar 

  26. Olivo G, Lucas TM, Borges AS, Silva ROS, Lobato FCF, Siqueira AK, Leite DS, Brandão PE, Gregori F, Oliveira-Filho JP, Takai S, Ribeiro MG (2016) Enteric pathogens and coinfections in foals with and without diarrhea. Biomed Res Int e2016:1–12

    Article  Google Scholar 

  27. Siqueira AK, Ribeiro MG, Leite DS, Tiba MR, Moura C, Lopes MD, Prestes NC, Salerno T, da Silva AV (2009) Virulence factors in Escherichia coli strains isolated from urinary tract infection and pyometra cases and from feces of healthy dogs. Res Vet Sci 86:206–210

    Article  CAS  PubMed  Google Scholar 

  28. Guerra ST, Orsi H, Joaquim SF, Guimarães FF, Lopes BC, Dalanezi FM, Leite DS, Langoni H, Pantoja JC, Rall VM, Hernandes RT, Lucheis SB, Ribeiro MG (2020) Investigation of extra-intestinal pathogenic Escherichia coli virulence genes, bacterial motility, and multidrug resistance pattern of strains isolated from dairy cows with different severity scores of clinical mastitis. J Dairy Sci 103:3606–3614

    Article  CAS  PubMed  Google Scholar 

  29. Li X, Zhang Z, Chang X, Wang X, Hu J, Lin Q, Jia Y, Yang X, Wang X (2019) Disruption of blood-brain barrier by an Escherichia coli isolated from canine septicemia and meningoencephalitis. Comp Immunol Microbiol Infect Dis 63:44–50

    Article  PubMed  Google Scholar 

  30. Zamprogna TO, Ribeiro D, Azevedo VAC, Lara GHB, Motta RG, da Silva RC, Siqueira AK, de NardiJúnior G, Listoni FJP, Martins LSA, da Silva AV, Portilho FVR, Mota AR, Rodrigues CA, Almeida BO, Ribeiro MG (2021) Bacteriological, cytological, and molecular investigation of Corynebacterium pseudotuberculosis, mycobacteria, and other bacteria in caseous lymphadenitis and healthy lymph nodes of slaughtered sheep. Braz J Microbiol 52:431–438

    Article  Google Scholar 

  31. Giguère S, Prescott JF, Dowling PM (2013) Antimicrobial therapy in veterinary medicine, 5th edn. Wiley & Sons Inc, Blackwell, Iowa, p 704

  32. Clarke LL, Hawkins IK, Rissi DR (2019) Central nervous system diseases of cattle in Georgia, 2001–2017. J Vet Diagn Invest 31:588–593

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wright WF, Casey NP, Palisoc K, Baghli S (2019) Viral (aseptic) meningitis: a review. J Neurologic Sci 398:176–183

    Article  Google Scholar 

  34. Soto RA, Hughes ML, Staples JE, Lindsay NP (2022) West Nile virus and other domestic nationally notificable arboviral diseases – United States 2020. Morb Mortal Wkly Rep 71:628–632

    Article  CAS  Google Scholar 

  35. Ungureanu A, Van der Meer J, Bicvic A, Abbuehl L, Chiffi G, Jaques L, Suter-Riniker F, Leib SL, Bassetti CLA, Dietmann A (2021) Meningitis, meningoencephalitis, and encephalitis in Bern: an observational study of 258 patients. BMC Neurol 21:e474

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Council for Scientific and Technological Development (CNPq), Brazil, for research productivity fellowships given to Márcio Garcia Ribeiro, Jane Megid, Helio Langoni, Alexandre Secorun Borges, and José Paes de Oliveira Filho.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcio Garcia Ribeiro.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Luis Nero

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, M.G., Pereira, T.T., de Lima Paz, P.J. et al. Bacterial identification in cerebrospinal fluid of domestic species with neurologic signs: a retrospective case-series study in 136 animals (2005–2021). Braz J Microbiol 54, 449–457 (2023). https://doi.org/10.1007/s42770-022-00891-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00891-2

Keywords

Navigation