Log in

The nematicide Serratia plymuthica M24T3 colonizes Arabidopsis thaliana, stimulates plant growth, and presents plant beneficial potential

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Nine bacterial strains were previously isolated in association with pinewood nematode (PWN) from wilted pine trees. They proved to be nematicidal in vitro, and one of the highest activities, with potential to control PWN, was showed by Serratia sp. M24T3. Its ecology in association with plants remains unclear. This study aimed to evaluate the ability of strain M24T3 to colonize the internal tissues of the model plant Arabidopsis thaliana using confocal microscopy. Plant growth–promoting bacteria (PGPB) functional traits were tested and retrieved in the genome of strain M24T3. In greenhouse conditions, the bacterial effects of all nematicidal strains were also evaluated, co-inoculated or not with Bradyrhizobium sp. 3267, on Vigna unguiculata fitness. Inoculation of strain M24T3 increased the number of A. thaliana lateral roots and the confocal analysis confirmed effective bacterial colonization in the plant. Strain M24T3 showed cellulolytic activity, siderophores production, phosphate and zinc solubilization ability, and indole acetic acid production independent of supplementation with l-tryptophan. In the genome of strain M24T3, genes involved in the interaction with the plants such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase, chitinolytic activity, and quorum sensing were also detected. The genomic organization showed ACC deaminase and its leucine-responsive transcriptional regulator, and the activity of ACC deaminase was 594.6 nmol α-ketobutyrate μg protein−1 μl−1. Strain M24T3 in co-inoculation with Bradyrhizobium sp. 3267 promoted the growth of V. unguiculata. In conclusion, this study demonstrated the ability of strain M24T3 to colonize other plants besides pine trees as an endophyte and displays PGPB traits that probably increased plant tolerance to stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alquéres S, Meneses C, Rouws L, Rothballer M, Baldani I, Schmid M, Hartmann A (2013) The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus PAL5. Mol Plant-Microbe Interact 26(8):937–945. https://doi.org/10.1094/MPMI-12-12-0286-R

    Article  CAS  PubMed  Google Scholar 

  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

    Article  CAS  PubMed  Google Scholar 

  4. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1987) Current protocols in molecular biology. John Wiley & Sons, Inc., NY

    Google Scholar 

  5. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carder JH (1986) Detection and quantitation of cellulase by Congo red staining of substrates in a cup-plate diffusion assay. Anal Biochem 153(1):75–79

    Article  CAS  PubMed  Google Scholar 

  7. Chen S, Qiu C, Huang T, Zhou W, Qi Y, Gao Y, Shen J, Qiu L (2013) Effect of 1-aminocyclopropane-1-carboxylic acid deaminase producing bacteria on the hyphal growth and primordium initiation of Agaricus bisporus. Fungal Ecol 6(1):110–118. https://doi.org/10.1016/j.funeco.2012.08.003

    Article  Google Scholar 

  8. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678. https://doi.org/10.1016/j.soilbio.2009.11.024

    Article  CAS  Google Scholar 

  9. Dandurishvili N, Toklikishvili N, Ovadis M, Eliashvili P, Giorgobiani N, Keshelava R, Tediashvili M, Vainstein A, Khmel I, Szegedi E, Chernin L (2011) Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumours on tomato plants. J Appl Microbiol 110(1):341–352. https://doi.org/10.1111/j.1365-2672.2010.04891.x

    Article  CAS  PubMed  Google Scholar 

  10. Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177(1–3):323–330. https://doi.org/10.1016/j.jhazmat.2009.12.035

    Article  CAS  PubMed  Google Scholar 

  11. Evans HF, McNamara DG, Braasch H, Chadoeuf J, Magnusson C (1996) Pest risk analysis (PRA) for the territories of the European Union (as PRA area) on Bursaphelenchus xylophilus and its vectors in the genus Monochamus. EPPO Bull 26(2):199–249. https://doi.org/10.1111/j.1365-2338.1996.tb00594.x

    Article  Google Scholar 

  12. Fan B, Chen XH, Budiharjo A, Bleiss W, Vater J, Borriss R (2011) Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. J Biotechnol 151(4):303–311. https://doi.org/10.1016/j.jbiotec.2010.12.022

    Article  CAS  PubMed  Google Scholar 

  13. Fineran PC, Cans CI, Ramsay JP, Wilf NM, Cossyleon D, Mcneil MB, Williamson NR, Monson RE, Becher SA, Stanton JL, Brügger K, Brown SD, Salmond PC (2013) Draft genome sequence of Serratia sp. strain ATCC 39006, a model bacterium for analysis of the biosynthesis and regulation of prodigiosin, a carbapenem, and gas vesicles. Genome Announc 1(6):e01039–e01013. https://doi.org/10.1128/genomeA.01039-13

    Article  PubMed  PubMed Central  Google Scholar 

  14. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15. https://doi.org/10.6064/2012/963401

    Article  CAS  Google Scholar 

  15. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39. https://doi.org/10.1016/j.micres.2013.09.009

    Article  CAS  PubMed  Google Scholar 

  16. Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61(2):793–796

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26(1):192–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):1–9

    Google Scholar 

  19. Hartmann A, Rothballer M, Hense BA, Schröder P (2014) Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Front Plant Sci 5:131. https://doi.org/10.3389/fpls.2014.00131

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hontzeas N, Richardson AO, Belimov A, Safronova V, Abu-Omar MM, Glick BR (2005) Evidence for horizontal transfer of 1-aminocyclopropane-1-carboxylate deaminase genes. Appl Environ Microbiol 71(11):7556–7558. https://doi.org/10.1128/AEM.71.11.7556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Howden AJM, Preston GM (2009) Nitrilase enzymes and their role in plant-microbe interactions. Microb Biotechnol 2(4):441–451. https://doi.org/10.1111/j.1751-7915.2009.00111.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Leite J, Seido SL, Passos SR, Xavier GR, Rumjanek NG, Martins LMV (2009) Biodiversity of rhizobia associated with cowpea cultivars in soils of the lower half of the São Francisco River Valley. Rev Bras Ciência Do Solo 33(5):1215–1226. https://doi.org/10.1590/S0100-06832009000500015

    Article  Google Scholar 

  24. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  25. Nascimento FX, Vicente CSL, Barbosa P, Espada M, Glick BR, Mota M, Oliveira S (2012) Evidence for the involvement of ACC deaminase from Pseudomonas putida UW4 in the biocontrol of pine wilt disease caused by Bursaphelenchus xylophilus. BioControl 58(3):427–433. https://doi.org/10.1007/s10526-012-9500-0

    Article  CAS  Google Scholar 

  26. Nascimento F, Vicente C, Cock P, Tavares M, Rossi M, Hasegawa K, Mota M (2018) From plants to nematodes: Serratia grimesii BXF1 genome reveals an adaptation to the modulation of multi-species interactions. Microb Genomics 4(7). doi https://doi.org/10.1099/mgen.0.000178

  27. Neupane S (2013) Genomics and transcriptomics of plant beneficial Serratia spp. Swedish University of Agricultural Sciences, Sweden

    Google Scholar 

  28. Paiva G, Proença DN, Francisco R, Verissimo P, Santos SS, Fonseca L, Abrantes IMO, Morais PV (2013) Nematicidal bacteria associated to pinewood nematode produce extracellular proteases. PLoS One 8(11):e79705. https://doi.org/10.1371/journal.pone.0079705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68(8):3795–3801. https://doi.org/10.1128/AEM.68.8.3795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118(1):10–15

    Article  CAS  PubMed  Google Scholar 

  31. Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362–370

    CAS  Google Scholar 

  32. Pinto-Tomás AA, Anderson MA, Suen G, Stevenson DM, Chu FST, Cleland WW, Weimer PJ, Currie CR (2009) Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326(5956):1120–1123. https://doi.org/10.1126/science.1173036

    Article  CAS  PubMed  Google Scholar 

  33. Proença DN (2014) Role of endophytic microbial community in pine wilt disease. University of Coimbra, Portugal

    Google Scholar 

  34. Proença DN, Francisco R, Santos CV, Lopes A, Fonseca L, Abrantes IMO, Morais PV (2010) Diversity of bacteria associated with Bursaphelenchus xylophilus and other nematodes isolated from Pinus pinaster trees with pine wilt disease. PLoS One 5(12):e15191. https://doi.org/10.1371/journal.pone.0015191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Proença DN, Espírito Santo C, Grass G, Morais PV (2012) Draft genome sequence of Serratia sp. strain M24T3, isolated from pinewood disease nematode Bursaphelenchus xylophilus. J Bacteriol 194(14):3764. https://doi.org/10.1128/JB.00670-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Proença DN, Francisco R, Kublik S, Scholer A, Vestergaard G, Schloter M, Morais PV (2017) The microbiome of endophytic, wood colonizing bacteria from pine trees as affected by Pine Wilt Disease. Sci Rep 7(1):4205. https://doi.org/10.1038/s41598-017-04141-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Proença DN, Grass G, Morais PV (2017) Understanding pine wilt disease: roles of the pine endophytic bacteria and of the bacteria carried by the disease-causing pinewood nematode. Microbiologyopen 6(2):e00415. https://doi.org/10.1002/mbo3.415

    Article  Google Scholar 

  38. Ramos HJO, Roncato-Maccari LDB, Souza EM, Soares-Ramos JRL, Hungria M, Pedrosa FO (2002) Monitoring Azospirillum-wheat interactions using the gfp and gusA genes constitutively expressed from a new broad-host range vector. J Biotechnol 97(3):243–252

    Article  CAS  PubMed  Google Scholar 

  39. Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14(4):435–443. https://doi.org/10.1016/j.pbi.2011.04.004

    Article  PubMed  Google Scholar 

  40. Rouws LFM, Leite J, de Matos GF, Zilli JE, Coelho MRR, Xavier GR, Fischer D, Hartmann A, Reis VM, Baldani JI (2013) Endophytic Bradyrhizobium spp. isolates from sugarcane obtained through different culture strategies. Environ Microbiol Rep 6(4):354–363. https://doi.org/10.1111/1758-2229.12122

    Article  CAS  PubMed  Google Scholar 

  41. Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei H-X, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci 100(8):4927–4932. https://doi.org/10.1073/pnas.0730845100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saravanan VS, Kalaiarasan P, Madhaiyan M, Thangaraju M (2007) Solubilization of insoluble zinc compounds by Gluconacetobacter diazotrophicus and the detrimental action of zinc ion (Zn2+) and zinc chelates on root knot nematode Meloidogyne incognita. Lett Appl Microbiol 44(3):235–241. https://doi.org/10.1111/j.1472-765X.2006.02079.x

    Article  CAS  PubMed  Google Scholar 

  43. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56

    Article  CAS  PubMed  Google Scholar 

  44. Shi C-L, Park H-B, Lee JS, Ryu S, Ryu C-M (2010) Inhibition of primary roots and stimulation of lateral root development in Arabidopsis thaliana by the rhizobacterium Serratia marcescens 90-166 is through both auxin-dependent and -independent signaling pathways. Mol Cells 29(3):251–258. https://doi.org/10.1007/s10059-010-0032-0

    Article  CAS  PubMed  Google Scholar 

  45. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

    Google Scholar 

  46. Timmusk S, Paalme V, Pavlicek T, Bergquist J, Vangala A, Danilas T, Nevo E (2011) Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS One 6(3):e17968. https://doi.org/10.1371/journal.pone.0017968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tindall JB, Sikorski J, Smibert AR, Krieg RN (2007) Phenotypic characterization and the principles of comparative systematics. In: Reddy CA, Beveridge JT, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR (eds) Methods for general and molecular microbiology, 3rd edn. American Society for Microbiology, Washington, DC, pp 330–393

    Google Scholar 

  48. Todorovic B, Glick BR (2008) The interconversion of ACC deaminase and D-cysteine desulfhydrase by directed mutagenesis. Planta 229(1):193–205. https://doi.org/10.1007/s00425-008-0820-3

    Article  CAS  PubMed  Google Scholar 

  49. Vicente GM (1970) Manual of the practical study of root nodule bacteria. International biology program, 15. Blackwell, Oxford, p 163

    Google Scholar 

  50. Vicente CSL, Nascimento FX, Barbosa P, Ke H-M, Tsai IJ, Hirao T, Cock PJA, Kikuchi T, Hasegawa K, Mota M (2016) Evidence for an opportunistic and endophytic lifestyle of the Bursaphelenchus xylophilus-associated bacteria Serratia marcescens PWN146 isolated from wilting Pinus pinaster. Microb Ecol 72(3):669–681. https://doi.org/10.1007/s00248-016-0820-y

    Article  CAS  PubMed  Google Scholar 

  51. Vicente CSL, Nascimento FX, Ikuyo Y, Cock PJA, Mota M, Hasegawa K (2016) The genome and genetics of a high oxidative stress tolerant Serratia sp. LCN16 isolated from the plant parasitic nematode Bursaphelenchus xylophilus. BMC Genomics 17(1):1–15. https://doi.org/10.1186/s12864-016-2626-1

    Article  CAS  Google Scholar 

  52. Wei G, Kloepper JW, Tuzum S (1996) Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology 86(2):221. https://doi.org/10.1094/Phyto-86-221

    Article  Google Scholar 

  53. Wubben MJ, Su H, Rodermel SR, Baum TJ (2001) Susceptibility to the sugar beet cyst nematode is modulated by ethylene signal transduction in Arabidopsis thaliana. Mol Plant-Microbe Interact 14(10):1206–1212. https://doi.org/10.1094/MPMI.2001.14.10.1206

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Grasiella Ventura Matioszek, Unidade Multiusuária de Microscopia Confocal—ICB/UFRJ for support on CSLM. We thank Jakson Leite for his support on cowpea assays. We thank Tiago Natal da Luz for his help with statistical analysis.

Funding statement

This work was financed by FEDER funds through the Programa Operacional Factores de Competitividade—COMPETE and by national funds through the Fundação para a Ciência e a Tecnologia (FCT), Portugal, under the projects UID/EMS/00285/2013 and PTDC/AGR-CFL/115373/2009, and Programa CNPq/Universidade de Coimbra/Associação Grupo de Coimbra de Dirigentes de Universidades Brasileiras—2010, process no. 590041/2010-0.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diogo Neves Proença or Paula V. Morais.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Luc F.M. Rouws.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fig. S1

Alignment of sequences showed differences between ACC deaminases and D-cysteine desulfhydrase. The sequences were aligned with CLUSTALW and it was verified the presence of the amino acids Glu295 and Leu322 at the active site confirming them as ACC deaminase or Thr at the both active sites confirming them as D-cysteine desulfhydrase. Serratia sp. M24T3 showed sequence of ACC deaminase whereas the most common sequences of the strains in the genus Serratia are D-cysteine desulfhydrases. (PNG 42557 kb)

High Resolution Image (TIF 25624 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proença, D.N., Schwab, S., Vidal, M.S. et al. The nematicide Serratia plymuthica M24T3 colonizes Arabidopsis thaliana, stimulates plant growth, and presents plant beneficial potential. Braz J Microbiol 50, 777–789 (2019). https://doi.org/10.1007/s42770-019-00098-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-019-00098-y

Keywords

Navigation