Log in

Synthesis and characterization of nanocarbon from waste batteries via an eco-friendly method

  • Article
  • Published:
Waste Disposal & Sustainable Energy Aims and scope Submit manuscript

Abstract

The widespread use of disposable batteries to power common electronic devices is a major source of e-waste. There are growing environmental and health concerns due to the expansion of e-waste around the world. Hence, develo** a reliable system for recycling old batteries has reached the top of the recycling priority list. The current study presents a novel approach to synthesis carbon nanoparticles (CNPs) from spent batteries via an eco-friendly method that offers economical, environment-friendly, and nontoxic approaches in comparison to conventional chemical methods. The synthesized nanoparticles were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX), powder X-ray diffractometry (XRD), UV–VIS absorption analysis (UV), Fourier transform infrared spectroscopy (FT-IR), Atomic force microscope (AFM), and thermo-gravimetric analysis (TGA). The average diameter of the synthesized particles was 40.16 nm, and the particles tended to be aspherical in shape. EDX analysis also predicted the presence of pure carbon, with some contamination arrived at 15% (in weight). This is a novel study in which nanocarbons were synthesized in a brine (7600×10−6) from a target (CNPs>75 nm), which paves the way for future use of CNPs derived from spent batteries and helps the environment by decreasing the amount of electronic waste dumped in landfills.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kiddee, P., Naidu, R., and Wong, M.H. 2013. Electronic waste management approaches: an overview. Waste Management 33 (5): 1237–1250. https://doi.org/10.1016/j.wasman.2013.01.006.

    Article  Google Scholar 

  2. Warnken ISE. 2010. Analysis of battery consumption, recycling and disposal in Australia. Available at: http://www.warnkenise.com.au. Accessed 20 Apr 2023.

  3. Mahmood, F.S., Hussein, H.Q., and Abdulwahhab, Z.T. 2022. Preparation and characterization of high surface area nanosilica from Iraqi sand via sol-gel technique. Journal of Petroleum Research and Studies 12 (4): 104–117. https://doi.org/10.52716/jprs.v12i4.645.

    Article  Google Scholar 

  4. Shakir, F., Hussein, H.Q., and Abdulwahhab, Z.T. 2023. Influence of nanosilica on solvent deasphalting for upgrading Iraqi heavy crude oil. Baghdad Science Journal 20 (1): 0144. https://doi.org/10.21123/bsj.2022.6895.

    Article  Google Scholar 

  5. Majeed, N.S., and Naji, D.M. 2018. Synthesis and characterization of iron oxide nanoparticles by open vessel ageing process. Iraqi Journal of Chemical and Petroleum Engineering 19 (2): 27–31. https://doi.org/10.31699/IJCPE.2018.2.5.

    Article  Google Scholar 

  6. Shakir, F., Hussein, H.Q., and Abdulwahhab, Z.T. 2022. Synthesis and characterization of nano silica from Iraqi sand by chemical precipitation with different acid types. AIP Conference Proceedings 2660: 020140. https://doi.org/10.1063/5.0107741.

    Article  CAS  Google Scholar 

  7. Al-Mahdawi, F.H.M., and Saad, K. 2018. Enhancement of drilling fluid properties using nanoparticles. Iraqi Journal of Chemical and Petroleum Engineering 19 (2): 21–26. https://doi.org/10.31699/IJCPE.2018.2.4.

    Article  Google Scholar 

  8. Abdulwahab, M.I., Thahab, S., and Dhiaa, A.H. 2016. Experimental study of thermophysical properties of TiO2 nanofluid. Iraqi Journal of Chemical and Petroleum Engineering 17 (2): 1–6. https://doi.org/10.31699/IJCPE.2016.2.1.

    Article  Google Scholar 

  9. Jalil, R.R., and Hussein, H.Q. 2018. The influence of nano fluid compared with polyethylene glycol and surfactant on wettability alteration of carbonate rock. IOP Conference Series: Materials Science and Engineering 454: 1. https://doi.org/10.1088/1757-899X/454/1/012046.

    Article  Google Scholar 

  10. Abdulrazzak, F.H., Alkiam, A.F., and Hussein, F.H. 2019. Behavior of X-ray analysis of carbon nanotubes. In Perspective of Carbon Nanotubes. London: IntechOpen. https://doi.org/10.5772/intechopen.85156.

  11. Bhardwaj, B., Singh, P., and Kumar, A. 2020. Eco-friendly greener synthesis of nanoparticles. Advanced Pharmaceutical Bulletin 10 (4): 566–576. https://doi.org/10.34172/apb.2020.067.

    Article  CAS  Google Scholar 

  12. Pentimalli, M., Bellusci, M., and Padella, F. 2015. High-energy ball milling as a general tool for nanomaterials synthesis and processing. Handbook of Mechanical Nanostructuring 2: 663–679. https://doi.org/10.1002/9783527674947.ch28.

    Article  Google Scholar 

  13. Joy, J., Krishnamoorthy, A., Tanna, A., et al. 2022. Recent developments on the synthesis of nanocomposite materials via ball milling approach for energy storage applications. Applied Sciences 12 (18): 9312. https://doi.org/10.3390/app12189312.

    Article  CAS  Google Scholar 

  14. El-Eskandarany, M.S., Al-Hazza, A., Al-Hajji, L.A., et al. 2021. Mechanical milling: a superior nanotechnological tool for fabrication of nanocrystalline and nanocomposite materials. Nanomaterials 11 (10): 2484. https://doi.org/10.3390/nano11102484.

    Article  CAS  Google Scholar 

  15. Salah, N., Habib, S.S., Khan, Z.H., et al. 2011. High-energy ball milling technique for ZnO nanoparticles as antibacterial material. International Journal of Nanomedicine 6: 863–869. https://doi.org/10.2147/ijn.s18267.

    Article  CAS  Google Scholar 

  16. Neikov, O.D., Yefimov, N.A., Naboychenko, S. 2018. Handbook of non-ferrous metal powders technologies and applications. 2nd Edition. Amsterdam: Elsevier. https://doi.org/10.1016/C2014-0-03938-X.

  17. Kudiyarov, V.N., Elman, R.R., and Kurdyumov, N.E. 2021. The effect of high-energy ball milling conditions on microstructure and hydrogen desorption properties of magnesium hydride and single-walled carbon nanotubes. Metals 11: 9. https://doi.org/10.3390/met11091409.

    Article  CAS  Google Scholar 

  18. Alhamid, M.Z., Hadi, B.S., and Khumaeni, A. 2019. Synthesis of silver nanoparticles using laser ablation method utilizing Nd:YAG laser. AIP Conference Proceedings 10: 5141626. https://doi.org/10.1063/1.5141626.

    Article  CAS  Google Scholar 

  19. Abd El-kader, F.H., Hakeem, N.A., Elashmawi, I.S., et al. 2015. Synthesis and characterization of PVK/AgNPs nanocomposites prepared by laser ablation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 138: 331–339. https://doi.org/10.1016/j.saa.2014.11.083.

    Article  CAS  Google Scholar 

  20. Soleimani, H., Yahya, N., Baig, M.K., et al. 2015. Synthesis of carbon nanotubes for oil-water interfacial tension reduction. Oil and Gas Research 1 (1): 1–5. https://doi.org/10.4172/2472-0518.1000104.

    Article  Google Scholar 

  21. Theerthagiri, J., Karuppasamy, K., Lee, S.J., et al. 2022. Fundamentals and comprehensive insights on pulsed laser synthesis of advanced materials for diverse photo- and electrocatalytic applications. Light: Science & Applications 11: 1. https://doi.org/10.1038/s41377-022-00904-7.

    Article  CAS  Google Scholar 

  22. Farzana, R., Rajarao, R., Behera, P.R., et al. 2018. Zinc oxide nanoparticles from waste Zn-C battery via thermal route: characterization and properties. Nanomaterials 8: 9. https://doi.org/10.3390/nano8090717.

    Article  CAS  Google Scholar 

  23. Chamakh, M.M., Ponnamma, D., and Al-Maadeed, M.A.A. 2018. Vapor sensing performances of PVDF nanocomposites containing titanium dioxide nanotubes decorated multi-walled carbon nanotubes. Journal of Materials Science: Materials in Electronics 29 (6): 4402–4412. https://doi.org/10.1007/s10854-017-8387-z.

    Article  CAS  Google Scholar 

  24. Uoda, MKh., Hussein, H.Q., and Jalil, R.R. 2023. Experimental investigation of combined carbon nanoparticles (CNPs), ionic liquid (I.L), and low salinity water to enhance oil recovery (EOR) at Iraq’s southern oil fields. Journal of Molecular Liquids 391: 123322. https://doi.org/10.1016/j.molliq.2023.123322.

    Article  CAS  Google Scholar 

  25. Fahad, M.M., Majeed, M.S., and Hashim, E.T. 2021. Carbon nanoparticles synthesis by different Nd:YAG laser pulse energy. Journal of Engineering 27 (7): 1–12. https://doi.org/10.31026/j.eng.2021.07.01.

    Article  Google Scholar 

  26. Thongpool, V., Asanithi, P., and Limsuwan, P. 2012. Synthesis of carbon particles using laser ablation in ethanol. Procedia Engineering 32: 1054–1060. https://doi.org/10.1016/j.proeng.2012.02.054.

    Article  CAS  Google Scholar 

  27. Nguyen, V., Zhao, N., Yan, L., et al. 2020. Double-pulse femtosecond laser ablation for synthesis of ultrasmall carbon nanodots. Materials Research Express 7: 015606. https://doi.org/10.1088/2053-1591/ab6124.

    Article  CAS  Google Scholar 

  28. Almalki, F.A., Khashan, Kh.S., Jabir, M.S., et al. 2022. Eco-friendly synthesis of carbon nanoparticles by laser ablation in water and evaluation of their antibacterial activity. Journal of Nanomaterials 2022: 7927447. https://doi.org/10.1155/2022/7927447.

    Article  CAS  Google Scholar 

  29. Tabatabaie, N., and Dorranian, D. 2016. Effect of fluence on carbon nanostructures produced by laser ablation in liquid nitrogen. Applied Physics A: Materials Science & Processing 122 (5): 1–9. https://doi.org/10.1007/s00339-016-0091-y.

    Article  CAS  Google Scholar 

  30. Aglio, M.D., Gaudiuso, R., Pascale, O.D., et al. 2015. Mechanisms and processes of pulsed laser ablation in liquids during nanoparticle production. Applied Surface Science 348: 4–9. https://doi.org/10.1016/j.apsusc.2015.01.082.

    Article  CAS  Google Scholar 

  31. Cheung, C.L., Hafner, J.H., and Lieber, C.M. 2000. Carbon nanotube atomic force microscopy tips: direct growth by chemical vapor deposition and application to high-resolution imaging. Proceedings of the National Academy of Sciences USA 97 (8): 3809–3813. https://doi.org/10.1073/pnas.050498597.

    Article  CAS  Google Scholar 

  32. Lingegowda, D.C., Kumar, J.K., Prasad, A.G.D., et al. 2014. FTIR spectroscopic studies on Cleome Gynandra—comparative. Romanian Journal of Biophysics 22: 137–143.

    Google Scholar 

  33. Kandra, R., and Bajpai, S. 2020. Synthesis, mechanical properties of fluorescent carbon dots loaded nanocomposites chitosan film for wound healing and drug delivery. Arabian Journal of Chemistry 13 (4): 4882–4894. https://doi.org/10.1016/j.arabjc.2019.12.010.

    Article  CAS  Google Scholar 

  34. Tan, Z., Chihara, H., Koike, C.H., et al. 2010. Interstellar analogs from defective carbon nanostructures account for interstellar extinction. Astronomical Journal 140 (5): 1456–1461. https://doi.org/10.1088/0004-6256/140/5/1456.

    Article  CAS  Google Scholar 

  35. Kang, S., Ryu, J.H., Lee, B., et al. 2019. Laser wavelength modulated pulsed laser ablation for selective and efficient production of graphene quantum dots. RSC Advances 9 (24): 13658–13663. https://doi.org/10.1039/c9ra02087j.

    Article  CAS  Google Scholar 

  36. Wirunchit, S., Gansa, P., and Koetniyom, W. 2021. Synthesis of ZnO nanoparticles by Ball-milling process for biological applications. Materials Today Proceedings 47: 3554–3559. https://doi.org/10.1016/j.matpr.2021.03.559.

    Article  CAS  Google Scholar 

  37. Russo, C., Stanzione, F., Barbellab, R., et al. 2007. The characteristics of soot formed in premixed flames by different fuels. Chemical Engineering Transaction 22: 41–46.

    Google Scholar 

  38. Mokhtar, M., El Enein, S.A., Hassaan, M., et al. 2017. Thermally reduced graphene oxide: synthesis, structural and electrical properties. International Journal of Nanoparticles Nanotechnology 3: 1. https://doi.org/10.35840/2631-5084/5508.

    Article  Google Scholar 

  39. Bannov, A.G., Popov, M.V., and Kurmashov, P.B. 2020. Thermal analysis of carbon nanomaterials: advantages and problems of interpretation. Journal of Thermal Analysis and Calorimetry 142 (1): 349–370. https://doi.org/10.1007/s10973-020-09647-2.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maraim Kh. Uoda.

Ethics declarations

Conflict of interest

On behalf of all the co-authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uoda, M.K., Hussein, H.Q. & Jalil, R.R. Synthesis and characterization of nanocarbon from waste batteries via an eco-friendly method. Waste Dispos. Sustain. Energy 6, 197–208 (2024). https://doi.org/10.1007/s42768-023-00180-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42768-023-00180-0

Keywords

Navigation