Log in

Effect of helium-neon laser irradiations on the in vitro culture of Vanilla planifolia jacks

  • Research Articles
  • Published:
Vegetos Aims and scope Submit manuscript

Abstract

Vanilla planifolia Jacks. is a commercially important species. Vanillin, used in various industries, is obtained from its Vanilla planifolia Jacks., is a commercially important species. Vanillin, used in various industries, is obtained from its fruits; however, it is currently in danger of extinction. Its limited genetic variability has contributed to its high susceptibility to pathogens such as Fusarium oxysporum f. sp. vanillae. Considering the above, the present work was proposed to evaluate the possible biostimulant effect of laser irradiation on the process of its micropropagation and on different variables in shoots (number of shoots, survival rate, length and diameter of the stem, and number of leaves) and in seedlings (length and diameter of the stem, number of leaves and roots, length and width of the root, and photosynthetic pigment content). For this purpose, shoots of the commercial morphotype “Mansa” of V. planifolia were irradiated at different exposure times (30, 60, 90, 120, and 150 s) with a helium-neon laser beam. It was observed that the shoots of the 60-second laser treatment showed the highest percentage of survival, the highest number of shoots, and the largest shoot size, as well as a similar stimulatory effect in terms of a higher number of leaves and leaf area, primary and secondary roots, and a higher content of photosynthetic pigments in the plantlets of this treatment evaluated after two months of cultivation under greenhouse conditions. It is concluded that the use of low doses of laser radiation can be a promising alternative to induce a “hormetic effect” that can contribute to cover the production of vanilla plantlets demanded by the vanilla sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbas M, Arshad M, Nisar N, Nisar J, Ghaffar A, Nazir A, Asif Tahir M, Iqbal M (2017) Muscilage characterization, biochemical and enzymatic activities of laser irradiated Lagenaria siceraria seedlings. J Photochem Photobiol B Biol 173:344–352. https://doi.org/10.1016/j.jphotobiol.2017.06.012

    Article  CAS  Google Scholar 

  • Abou-Dahab ADM, Mohammed TA, Heikal AA, Taha LS, Gabr AMM, Metwally SA, Ali AIR (2019) In vitro laser, radiation induces mutation and growth in the Eustoma grandiflorum plant. Bull Natl Res Centre 43:1–13. https://doi.org/10.1186/s42269-018-0036-z

    Article  Google Scholar 

  • Armenta-Montero S, Menchaca-García R, Pérez-Silva A, Velázquez-Rosas N (2022) Changes in the potential distribution of Vanilla planifolia Andrews under Different Climate Change Projections in Mexico. Sustainability 14(5):2881. https://doi.org/10.3390/su14052881

  • Arya SS, Rookes JE, Cahill DM, Lenka S (2021) Vanillin: a review on the therapeutic prospects of a popular flavoring molecule. Adv Traditional Med 21:1–17. https://doi.org/10.1007/s13596-020-00531-w

    Article  CAS  Google Scholar 

  • Bello-Bello JJ, García-García GG, Iglesias-Andreu LG (2015) Conservación de vainilla (Vanilla planifolia Jacks.) Bajo condiciones de lento crecimiento in vitro. Revista Fitotecnia Mexicana 38(2):165–171. https://doi.org/10.35196/rfm.2015.2.165

    Article  Google Scholar 

  • Bello-Bello JJ, Spinoso-Castillo J, Iglesias-Andreu LG (2018) Establecimiento de un sistema de biorreactores para la micropropagación de vainilla (Vanilla planifolia Jacks. ex Andrews). Agro Productividad 7(3):63–68

    Google Scholar 

  • Costilla-Hermosillo MG, Ortiz-Morales M, Loza-Cornejo S, Frausto-Reyes C, Metwally SA (2019) Laser bio-stimulation for improving seeds germinative capacity and seedlings growth of Prosopis laevigata and Jacaranda mimosifolia. Madera y Bosques 25(2):e2521665. https://doi.org/10.21829/myb.2019.2521665

    Article  Google Scholar 

  • Etienne H, Berthouly M (2002) Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult 69(3):215–231. https://doi.org/10.1023/A:1015668610465

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nation (2021) FAOSTAT-statistical databases. https://www.fao.org/faostat/es/#home [Accessed on 12.03.2023]

  • Hernández-Aguilar C, Domínguez-Pacheco A, Cruz-Orea A, Podleśna A, Ivanov R, Carballo-Carballo A, Pérez-Reyes MC, Sánchez-Hernández G, Zepeda-Bautista R, López-Bonilla JL (2016) Bioestimulación láser en semillas y plantas. Gayana Bot 73:132–149

    Article  Google Scholar 

  • Hwida MF, Metwally SA, Lobna ST (2012) In vitro growth behavior and leaf anatomical structure of Balanites aegyptiaca and Cotoneoster horizontalis affected by different types of laser radiation. J Appl Sci Res 8(4):2386–2396

    Google Scholar 

  • IUCN (2022) The IUCN Red List of Threatened Species. Version 2021–3. http://www.iucnredlist.org [Accessed on 12.03.2023]

  • Klimek-Kopyra A, Dłuzniewska J, Slizowska A, Dobrowolski JW (2020) Impact of coherent laser irradiation on germination and mycoflora of soybean seeds—innovative and prospective seed Quality Management. Agriculture 10:314. https://doi.org/10.3390/agriculture10080314

    Article  CAS  Google Scholar 

  • Koper R, Wójcik S, Kornas-Czucuzwar B, Bojarka, U (1996) Effect of the laser exposure of seeds on the yield and chemical composition of sugar beet roots. Int Agrophys 10(2):103–108

    Google Scholar 

  • Lobna ST, Hanan AAT, Metwally SA, Hwida MF (2014) Effect of laser radiation treatments on in vitro growth behavior, antioxidant activity and chemical constituents of Sequoia sempervirens. Res J Pharm Biol Chem Sci 5(4):1024–1034

    Google Scholar 

  • Morales MO, Jiménez AMM, Cornejo SL (2018) Efecto de irradiación láser He-Ne y exposición a diodos emisores de luz sobre el contenido de pigmentos fotosintéticos en plántulas de chile poblano (Capsicum annuum). Interciencia 43(7):484–490

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and Bioassays with tobacco tissue culture. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nadimi M, Da-Wen S, Jitendra P (2021) Recent applications of novel laser techniques for enhancing agricultural production. Laser Phys 31(5):053001, 1–32. https://doi.org/10.1088/1555-6611/abebda

    Article  CAS  Google Scholar 

  • Naik R, Bhushan A, Gupta RK, Walia A, Gaur A (2020) Low-cost tissue Culture Technologies in vegetables: a review. Int J Biochem Res Rev 29(9):66–78. https://doi.org/10.9734/ijbcrr/2020/v29i930226

    Article  CAS  Google Scholar 

  • OMPI (2019) Organización Mundial de la Propiedad Intelectual. Registro Internacional de la denominación de origen: Vainilla de Papantla. https://www.dof.gob.mx/nota_detalle.php?codigo=5082615&fecha=05/03/2009#gsc.tab=0

  • Pérez-García F, Pita-Villamil JM (2001) Viabilidad, vigor, longevidad y conservación de semillas. Ministerio de Agricultura, Pesca y Alimentación, Madrid, pp 1–16

    Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim et Biophys Acta (BBA)-Bioenergetics 975(3):384–394. https://doi.org/10.1016/S0005-2728(89)80347-0

    Article  CAS  Google Scholar 

  • Ramírez-Mosqueda MA, Iglesias-Andreu LG (2016) Evaluation of different temporary immersion systems (BIT®, BIG, and RITA®) in the micropropagation of Vanilla planifolia Jacks. Vitro Cell Dev Biology-Plant 52(2):154–160. https://doi.org/10.1007/s11627-015-9735-4

    Article  Google Scholar 

  • Ramírez-Mosqueda MA, Iglesias-Andreu LG, Noa-Carrazana JC, Armas-Silva AA (2018) Selección de genotipos de Vanilla planifolia Jacks ex Andrews resistentes a Fusarium oxysporum f. sp. vanillae, mediante biotecnología. Agro Productividad 11(3):70–74

    Google Scholar 

  • Ramos-Castella AL, Iglesias-Andreu LG (2022) Avances y tendencias en mejoramiento genético de vainilla. Ciencia y Tecnología Agropecuaria 23(2):e2339. https://doi.org/10.21930/rcta.vol23_num2_art:2339

    Article  Google Scholar 

  • Ramos-Castellá A, Iglesias-Andreu LG, Bello-Bello J, Lee-Espinosa H (2014) Improved propagation of Vanilla (Vanilla planifolia Jacks. Ex Andrews) using a temporary immersion system. Vitro Cell Dev Biology-Plant 50:576–581. https://doi.org/10.1007/s11627-014-9602-8

    Article  CAS  Google Scholar 

  • Rania AT, Lobna ST, Metwally SA (2015) In vitro cultures of jojoba (Simmondsia chinensis L.) affected by laser irradiation. J Chem Biol Phys Sci 5(4):3906–3913

    CAS  Google Scholar 

  • Rodríguez Rodríguez S, Ortega Delgado E, Silva Pupo JJ, Álvarez Fonseca A, Ulloa Enríquez M, Arias Basulto LE (2021) Effect of Low-Power Laser Biotechnology Pretreatment on Shooting and Initial Growth of White Mulberry and Sugarcane under Flood Stress. In: Subtle Agroecologies Pp. 155–165

  • Secretaría de Medio Ambiente, Recursos Naturales (SEMARNAT) (2010) Norma Oficial Mexicana NOM-059-ECOL-2010. Protección ambientspecies de flora y fauna silvestres de México, categorías de riesgo y especificaciones para su inclusión, exclusión o cambio, y lista de especies en riesgo. Diario Oficial de la Federación, jueves 30 de diciembre de 2010, 1: 1–77

  • Spinoso-Castillo JL, Chavez-Santoscoy RA, Bogdanchikova N, Pérez-Sato JA, Morales-Ramos V, Bello-Bello JJ (2017) Antimicrobial and hormetic effects of silver nanoparticles on in vitro 51 regenerations of vanilla (Vanilla planifolia jacks. Ex Andrews) using a temporary immersion system. Plant Cell Tissue and Organ Culture 129(2):195–207. https://doi.org/10.1007/s11240-017-1169-8

    Article  CAS  Google Scholar 

  • Statgraphics Centurion XVI (2009) Statpoint Technologies. INC version 16:17

  • Valdiani A, Hansen OK, Nielsen UB, Johannsen VK, Shariat M, Georgiev MI, Omidvar V, Ebrahimi M, Dinanai ET, Abiri R (2019) Bioreactor-based advances in plant tissue and cell culture: Challenges and prospects. Crit Rev Biotechnol 39(1):20–34. https://doi.org/10.1080/07388551.2018.1489778

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lourdes Georgina Iglesias-Andreu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Valdez, J.L., Iglesias-Andreu, L.G. & Flores-López, L.Y. Effect of helium-neon laser irradiations on the in vitro culture of Vanilla planifolia jacks. Vegetos 37, 974–982 (2024). https://doi.org/10.1007/s42535-023-00627-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42535-023-00627-z

Keywords

Navigation