Log in

Metagenomic sequencing reveals altered gut microbiota of sojourners at high altitude: a longitudinal study

  • Original Article
  • Published:
Journal of Proteins and Proteomics Aims and scope Submit manuscript

Abstract

Human microbial alterations are associated with environmental stress, nutrition, genetic, and triggering de-novo variations. Nevertheless, the human gut microbiome at extreme altitude (> 5800 m) remains unexplored. We aimed to demonstrate the microbial predominance in individuals with the same ethnicity and dietary pattern at extreme altitude with unique challenges like cold, hypoxia, radiation, etc. Different analysis pipelines were used for fecal whole genome sequencing at 210 m, 3500 m, 4420 m and 5805 m, and 16S rRNA V3-V4 regions amplification sequencing of 19 individuals belonging to the same ethnicity and dietary pattern for the presence of taxonomy and functional potential and confirming the prediction up to the strain level within the same cohort. Principal component analysis revealed distinct microbiome changes at different altitudes, with varied and higher Bacteroides and Prevotella ratio. There was a predominance of genus Prevotella at altitudes 4420 m and 5805 m than at 210 m and 3500 m. The appearance of species Prevotella copri strain 61,740 increased significantly at extreme altitude, whereas co-occurrence of other bacterial strains had a different pattern than Prevotella. The extensive strain-level analysis indicated alteration in the metabolic pathways. This study under the stressful and hypoxic environment of extreme altitudes, associated microbial variation with altered metabolic pathways, reveals the influence of extreme environment on human gut microbiota with the predominance of Prevotella.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

available at respective heights

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

Sequencing data reported in this paper is available at NCBI under the project no. PRJNA492714.

References

  • Adak A, Maity C, Ghosh K, Pati BR, Mondal KC (2013) Dynamics of predominant microbiota in the human gastrointestinal tract and change in luminal enzymes and immunoglobulin profile during high-altitude adaptation. Folia Microbiol (praha) 58:523–528

    CAS  Google Scholar 

  • Adak A, Ghosh K, Mondal KC (2014a) Modulation of small intestinal homeostasis along with its microflora during acclimatization at simulated hypobaric hypoxia. Ind J Exp Biol 52:1098–1105

    Google Scholar 

  • Adak A, Maity C, Ghosh K, Mondal KC (2014b) Alteration of predominant gastrointestinal flora and oxidative damage of large intestine under simulated hypobaric hypoxia. Z Gastroenterol 52:180–186

    CAS  PubMed  Google Scholar 

  • Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berrios J (1982) Consideraciones sobre la patología digestiva en los habitantes de las grandes alturas del Perú. (In Spanish). Rev Gastroenterol (Peru) 2:21–28

  • Bhute S, Pande P, Shetty SA, Shelar R, Mane S, Kumbhare SV et al (2016) Molecular characterization and meta-analysis of gut microbial communities illustrate enrichment of Prevotella and Megasphaera in Indian subjects. Front Microbiol 9:657–660

    Google Scholar 

  • Bultink IE, Dorigo-Zetsma JW, Koopman MG, Kuijper EJ (1999) Fusobacteriumnucleatum septicemia and portal vein thrombosis. Clin Infect Dis 28:1325–1326

    CAS  PubMed  Google Scholar 

  • Carroll IM, Ringel-Kulka T, Siddle JP, Klaenhammer TR, Ringel Y (2012) Characterization of the fecal microbiota using high-throughput sequencing reveals a stable microbial community during storage. PLoS One 7:e46953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conlon M, Bird A (2014) The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7:17–44

    PubMed  PubMed Central  Google Scholar 

  • Das B, Ghosh TS, Kedia S, Rampal R, Saxena S, Bag S et al (2018) Analysis of the gut microbiome of rural and urban healthy Indians living in sea level and high altitude areas. Sci Rep 8:1–15

    Google Scholar 

  • De Filippis F, Pellegrini N, Laghi L, Gobbetti M, Ercolini D (2016a) Unusual sub-genus associations of faecalPrevotella and Bacteroides with specific dietary patterns. Microbiome 4:1–6

    Google Scholar 

  • De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L et al (2016b) High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65:1812–1821

    PubMed  Google Scholar 

  • De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S et al (2010) Impact of diet in sha** gut microbiotarevealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci 107:14691–14696

    PubMed  PubMed Central  Google Scholar 

  • Dehingia M, Devi KT, Talukdar NC, Talukdar R, Reddy N, Mande SS et al (2015) Gut bacterial diversity of the tribes of India and comparison with the worldwide data. Sci Rep 22:18555–18563

    Google Scholar 

  • Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci 108:4554–4561

    CAS  PubMed  Google Scholar 

  • Dillon SM, Lee EJ, Kotter CV, Austin GL, Gianella S, Siewe B et al (2016) Gut dendritic cell activation links an altered colonic microbiome to mucosal and systemic T-cell activation in untreated HIV-1 infection. Mucosal Immunol 9:24–37

    CAS  PubMed  Google Scholar 

  • Donaldson GP, Lee SM, Mazmanian SK (2016) Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 14:1–13

    Google Scholar 

  • Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K et al (2016) Population-level analysis of gut microbiome variation. Science 352:560–564

    CAS  PubMed  Google Scholar 

  • Ghosh TS, Gupta SS, Bhattacharya T, Yadav D, Barik A, Chowdhury A et al (2014) Gut microbiomes of Indian children of varying nutritional status. PLoS One 9:e95547

    PubMed  PubMed Central  Google Scholar 

  • Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R et al (2014) Human genetics shape the gut microbiome. Cell 159:789–799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamidi K, Pauwels A, Bingen M, Simo AC, Medini A, Jarjous N et al (2008) Recent portal and mesenteric venous thrombosis associated with Fusobacterium bacteremia. Gastroenterol Clin Biol 32:734–739

    CAS  PubMed  Google Scholar 

  • Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    Google Scholar 

  • Huttenhower C, Kostic AD, Xavier RJ (2014) Inflammatory bowel disease as a model for translating the microbiome. Immunity 40:843–854

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iljazovic A, Roy U, Gálvez EJ, Lesker TR, Zhao B, Gronow A, Amend L, Will SE, Hofmann JD, Pils MC, Schmidt-Hohagen K (2021) Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunol 14:113–124

    CAS  PubMed  Google Scholar 

  • Jensen LJ, Julien P, Kuhn M, von Mering C, Muller J, Doerks T et al (2008) eggNOG: automated construction and annotation of orthologous groups of genes. Nucleic Acids Res 36:D250–D254

    CAS  PubMed  Google Scholar 

  • Kang DD, Froula J, Egan R, Wang Z (2015) MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. Peer J 3:e1165

    PubMed  PubMed Central  Google Scholar 

  • Khachatryan ZA, Ktsoyan ZA, Manukyan GP, Kelly D, Ghazaryan KA, Aminov RI (2008) Predominant role of host genetics in controlling the composition of gut microbiota. PLoS One 3:e3064

    PubMed  PubMed Central  Google Scholar 

  • Khatri P, Sirota M, Butte AJ (2012) Ten years of pathway analysis: current approaches and outstanding challenges. PLoSComput Biol 8:e1002375

    CAS  Google Scholar 

  • Kim J, Kim MS, Koh AY, ** and analysis pipeline for metagenomics and meta-transcriptomics studies. BMC Bioinform 17:1–8

    CAS  Google Scholar 

  • Kleessen B, Schroedl W, Stueck M, Richter A, Rieck O, Krueger M (2005) Microbial and immunological responses relative to high-altitude exposure in mountaineers. Med Sci Sports Exerc 37:1313–1318

    PubMed  Google Scholar 

  • Konstantinov SR, van der Woude CJ, Peppelenbosch MP (2013) Do pregnancy-related changes in the microbiome stimulate innate immunity? Trends Mol Med 19:454–459

    CAS  PubMed  Google Scholar 

  • Koren O, Spor A, Felin J, Fak F, Stombaugh J, Tremaroli V et al (2011) Human, oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci 108:4592–4598

    CAS  PubMed  Google Scholar 

  • Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T et al (2015) Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of prevotella. Cell Metab 22:971–982

    CAS  PubMed  Google Scholar 

  • Kultima JR, Coelho LP, Forslund K, Huerta-Cepas J, Li SS, Driessen M et al (2016) MOCAT2: a metagenomic assembly, annotation and profiling framework. Bioinformatics 32:2520–2523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen JM (2017) The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology 151:363–374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lauber CL, Zhou N, Gordon JI, Knight R, Fierer N (2010) Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiol Lett 307:80–86

    CAS  PubMed  Google Scholar 

  • León-Velarde F, Maggiorini M, Reeves JT, Aldashev A, Asmus I, Bernardi L et al (2005) Consensus statement on chronic and subacute high-altitude diseases. High Alt Med Biol 6:147–157

    PubMed  Google Scholar 

  • Lepage P, Leclerc MC, Joossens M, Mondot S, Blottière HM, Raes J et al (2013) A metagenomic insight into our gut’s microbiome. Gut 62:146–158

    PubMed  Google Scholar 

  • Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces sha** microbial diversity in the human intestine. Cell 24:837–848

    Google Scholar 

  • Li L, Zhao X (2015) Comparative analyses of fecal microbiota in Tibetan and Chinese Han living at low or high altitude by barcoded 454 pyrosequencing. Sci Rep 5:1–10

    Google Scholar 

  • Li K, Dan Z, Gesang L, Wang H, Zhou Y, Du Y et al (2016) Comparative analysis of gut microbiota of native tibetan and han populations living at different altitudes. PLoS One 11:e0155863

    PubMed  PubMed Central  Google Scholar 

  • Lieberman TD, Flett KB, Yelin I, Martin TR, McAdam AJ, Priebe GP et al (2013) Genetic variation of a bacterial pathogen within individuals with cystic fibrosis provides a record of selective pressures. Nat Genet 46:82–87

    PubMed  PubMed Central  Google Scholar 

  • Litvak Y, Sharon S, Hyams M, Zhang L, Kobi S, Katsowich N et al (2017) Epithelial cells detect functional type III secretion system of entero pathogenic Escherichia coli through a novel NF-κB signaling pathway. PLoSPathog 13:e1006472

    Google Scholar 

  • Liu MF (1995) Upper alimentary bleeding at high altitude. In: Lu YD, Li KX, Yin ZY (eds) High altitude medicine and physiology (In Chinese). Tian**g Science & Technology Press, Tian**g, p 586

    Google Scholar 

  • Luks AM (2015) Physiology in medicine: a physiologic approach to prevention and treatment of acute high-altitude illnesses. J Appl Physiol 118:509–519

    CAS  PubMed  Google Scholar 

  • Luo R, Liu B, **e Y, Li Z, Huang W, Yuan J et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1:1–6

    Google Scholar 

  • Mannucci PM, Gringeri A, Peyvandi F, Di Paolantonio T, Mariani G (2002) Short-term exposure to high altitude causes coagulation activation and inhibits fibrinolysis. Thromb Haemost 87:342–343

    CAS  PubMed  Google Scholar 

  • Maurice CF, Haiser HJ, Turnbaugh PJ (2013) Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152:39–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A et al (2011) An improved Greengenes taxonomy with explicit ranksfor ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618

    PubMed  PubMed Central  Google Scholar 

  • Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-genome. Curr Opin Genet Dev 15:589–594

    CAS  PubMed  Google Scholar 

  • Meer RR, Songer JG, Park DL (1997) Human disease associated with Clostridium perfringens enterotoxin. Rev Environ Contam Toxicol 150:75–94

    CAS  PubMed  Google Scholar 

  • Mende DR, Sunagawa S, Zeller G, Bork P (2013) Accurate and universal delineation of prokaryotic species. Nat Met 10:881–884. https://doi.org/10.1038/nmeth.2575

    Article  CAS  Google Scholar 

  • Moeller AH, Li Y, Ngole EM, Ahuka-Mundeke S, Lonsdorf EV, Pusey AE et al (2014) Rapid changes in the gut microbiome during human evolution. Proc Natl Acad Sci 111:16431–16435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nayfach S, Rodriguez-Mueller B, Garud N, Pollard KS (2016) An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Res 26:1612–1625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nemati R, Dietz C, Anstadt EJ, Cervantes J, Liu Y, Dewhirst FE et al (2007) Deposition and hydrolysis of serine dipeptide lipids of Bacteroidetes bacteria in human arteries: relationship to atherosclerosis. J Lipid Res 58:1999–2007

    Google Scholar 

  • Paulson JN, Stine OC, Bravo HC, Pop M (2013) Differential abundance analysis for microbial marker-gene surveys. Nat Met 10:1200–1202

    CAS  Google Scholar 

  • Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, Forslund K, Hildebrand F, Prifti E, Falony G, Le Chatelier E (2016) Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535:376–381

    CAS  PubMed  Google Scholar 

  • Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz F et al (2011) Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N Engl J Med 365:709–717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Redford MR, Ellis R, Rees CJ (2005) Fusobacteriumnecrophorum infection associated with portal vein thrombosis. J Med Microbiol 54:993–995

    PubMed  Google Scholar 

  • Saito A (1989) The medical reports of the China-Japan-Nepal Friendship Expedition to Mt. Qomolungma/Sagamartha (Everest). Jap J Mount Med 9:83–87

    Google Scholar 

  • Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C et al (2013) Expansion of intestinal Prevotellacopri correlates with enhanced susceptibility to arthritis. Elife 2:1–20

    Google Scholar 

  • Schroeder BO, Bäckhed F (2016) Signals from the gut microbiota to distant organs in physiology and disease. Nat Med 22:1079–1089

    CAS  PubMed  Google Scholar 

  • Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904

    CAS  PubMed  Google Scholar 

  • Shreiner AB, Kao JY, Young VB (2015) The gut microbiome in health and in disease. Curr Opin Gastroenterol 31:69–75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Snitkin ES, Zelazny AM, Montero CI, Stock F, Mijares L, NISC Comparative Sequence Program et al (2011) Genome-wide recombination drives diversification of epidemic strains of Acinetobacter baumannii. Proc Natl Acad Sci 108:13758–13763

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su T, Liu R, Lee A, Long Y, Du L, Lai S, Chen X, Wang L, Si J, Owyang C, Chen S (2018) Altered intestinal microbiota with increased abundance oPfr evotella is associated with high risk of diarrhea-predominant irritable bowel syndrome. Gastroenterol Res Pract 2018:1–9

  • Tandon D, Haque MM, Saravanan R, Shaikh S, Sriram P, Dubey AK et al (2018) A snapshot of gut microbiota of an adult urban population from Western region of India. PLoS One 13:e0195643

    PubMed  PubMed Central  Google Scholar 

  • Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28:603–661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE et al (2009) A core gutmicrobiome in obese and lean twins. Nature 457:480–484

    CAS  PubMed  Google Scholar 

  • Tyagi T, Ahmad S, Gupta N, Sahu A, Ahmad Y, Nair V et al (2014) Altered expression of platelet proteins and calpain activity mediate hypoxia-induced prothrombotic phenotype. Blood 123:1250–1260

    CAS  PubMed  Google Scholar 

  • Vandeputte D, Falony G, Vieira-Silva S, Tito RY, Joossens M, Raes J (2016) Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65:57–62

    CAS  PubMed  Google Scholar 

  • Veldhuyzen van Zanten SJ, Pollak PT, Best LM, Bezanson GS, Marrie T (1994) Increasing prevalence of Helicobacter pylori infection with age: continuous risk of infection in adults rather than cohort effect. J Infect Dis 169:434–437

    CAS  PubMed  Google Scholar 

  • Vogtmann E, Hua X, Zeller G, Sunagawa S, Voigt AY, Hercog R et al (2016) Colorectal cancer and the human gut microbiome: reproducibility with whole-genome shotgun sequencing. PLoS One 11:e0155362

    PubMed  PubMed Central  Google Scholar 

  • WHO EC (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363:157–163

    Google Scholar 

  • Wu TY (2001) Take note of altitude gastrointestinal bleeding. Newsl Int Soc Mt Med 10:9–11

    Google Scholar 

  • Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zakrzewski M, Proietti C, Ellis JJ, Hasan S, Brion MJ, Berger B et al (2017) Calypso: a user-friendly web-server for mining and visualizing microbiome-environment interactions. Bioinformatics 1:782–783

    Google Scholar 

  • Zhu A, Sunagawa S, Mende DR, Bork P (2015) Inter-individual differences in the gene content of human gut bacterial species. Genome Biol 16:1–13

    Google Scholar 

Download references

Acknowledgements

Authors thank DRDO for funding. Also, NXGenBio is greatly acknowledged for data assembly and analysis. All the sojourns are accredited for participating in the study.

Funding

This work is supported by Defence Research and Development Organization.

Author information

Authors and Affiliations

Authors

Contributions

LG, SBS and BK devised the project, designed the study protocol and supervised all phases of the project. BB, APY and MRE performed sample collection and DNA extraction. LG and BB carried out subjects phenoty**, data interpretation and analyses, and wrote the manuscript. MPKR and TN arranged for subjects availability and provided logistics support at high latitude. AKS participated in sample collection at baseline, DNA extraction and library preparations. All authors contributed to data interpretation, discussions and editing of the paper.

Corresponding author

Correspondence to L. Ganju.

Ethics declarations

Conflict of interest

No authors report any conflict of interest.

Ethics Statement and volunteer information

All expedition participants understood the nature of the study and gave the written consent. The ethics committee of Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India approved all the relevant parameters of the study. The study protocols were in accordance with the Helsinki’s approved guidelines.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhushan, B., Eslavath, M.R., Yadav, A.P. et al. Metagenomic sequencing reveals altered gut microbiota of sojourners at high altitude: a longitudinal study. J Proteins Proteom 12, 271–288 (2021). https://doi.org/10.1007/s42485-021-00077-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42485-021-00077-8

Keywords

Navigation