Log in

TiO2−x–TiO2 Memristor Applications for Programmable Analog VLSI Circuits at 45 nm CMOS Technology Node

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Memristor-CMOS (MCM) technology combines CMOS processing with nano-scale memristors enabling a significant reduction in the silicon area as compared to CMOS-only counterparts. Moreover, the non-volatile memory characteristics of the memristor offers opportunity for new and innovative MCM hybrid VLSI circuits that can outperform conventional CMOS designs. MCM based hybrid, homogeneous re-configurable architectures have already gained immense popularity among digital VLSI designers. This paper explores application of \(TiO_{2-x}\)\(TiO_{2}\) charge trap memristor for programmable analog VLSI applications. The threshold adaptive memristor SPICE model has been used to evaluate the performance of the memristor in electronic design automation tool in conjunction with 45 nm CMOS devices. A digitally controlled MCM analog buffer, MCM binary phase shift keying modulator and a variable gain MCM differential amplifier has been presented in this paper. The MCM analog buffer has 81% greater gain-bandwidth product than the corresponding CMOS-only buffer and has an attenuation of \(-32\) dB when the control signal is low. A MCM differential amplifier is proposed whose gain can be varied in both directions by shifting the operating point of the memristor through control signals, proving the advantages of using MCM technology for automatic gain control and other programmable analog VLSI applications. A MCM BPSK modulator circuit is also proposed which occupies 37.2% lesser silicon area than the conventional CMOS-only BPSK modulators, thus illustrating the utility of memristor in analog switching circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L. Chua, IEEE Trans. Circuit Theory 18(5), 507 (1971)

    Article  Google Scholar 

  2. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453(7191), 80 (2008). https://doi.org/10.1038/nature06932

    Article  CAS  Google Scholar 

  3. A.N. Belov, A.A. Golishnikov, A.M. Mastinin, A.A. Perevalov, V.I. Shevyakov, Semiconductors 53(15), 2024 (2019). https://doi.org/10.1134/S1063782619150041

    Article  CAS  Google Scholar 

  4. M. Zabeli, N. Caka, M. Limani, Q. Kabashi, in Proceedings of the 6th Conference on {Microelectronics}, nanoelectronics, optoelectronics. MINO’07 (World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, 2007), pp. 54–58

  5. L. Wei, F. Boeuf, T. Skotnicki, H.P. Wong, IEEE Trans. Electron Devices 58(5), 1361 (2011)

    Article  Google Scholar 

  6. Jyi-Tsong Lin, Chih-Hao Kuo, Tai-Yi Lee, Yi-Chuen Eng, Tzu-Feng Chang, Po-Hsieh Lin, Hsuan-Hsu Chen, Chih-Hung Sun, Hsien-Nan Chiu. in 2009 16th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits, pp. 75–78 (2009)

  7. J. Cong, B. **ao, in 2011 IEEE/ACM International Symposium on Nanoscale Architectures, pp. 1–8 (2011)

  8. D. Strukov, S. Williams, Proc. Natl. Acad. Sci. U. S. A. 106, 20155 (2009). https://doi.org/10.1073/pnas.0906949106

    Article  Google Scholar 

  9. K.T.T. Cheng, D. Strukov, Proc. Int. Symp. Phys. Des. (2012). https://doi.org/10.1145/2160916.2160925

    Article  Google Scholar 

  10. M. Khalid, S. Mukhtar, M.J. Siddique, S.F. Ahmed, Trans. Electr. Electron. Mater. 20(5), 403 (2019). https://doi.org/10.1007/s42341-019-00135-5

    Article  Google Scholar 

  11. J. Borghetti, G.S. Snider, P.J. Kuekes, J.J. Yang, D.R. Stewart, R.S. Williams, Nature 464(7290), 873 (2010). https://doi.org/10.1038/nature08940

    Article  CAS  Google Scholar 

  12. S. Shin, K. Kim, S. Kang, IEEE Trans. Circuits Syst. II Express Briefs 58(7), 442 (2011)

    Article  Google Scholar 

  13. L. Gao, F. Alibart, D.B. Strukov, IEEE Trans. Nanotechnol. 12(2), 115 (2013)

    Article  CAS  Google Scholar 

  14. S. Shin, K. Kim, S.M. Kang, IEEE Trans. Circuits Syst. I Regul. Pap. 60, 1241 (2013). https://doi.org/10.1109/TCSI.2013.2244434

    Article  Google Scholar 

  15. K. Kim, S. Shin, S. Kang, IEEE Trans. Comput.-Aid. Des. Integr. Circuits Syst. 30(12), 1800 (2011)

    Article  Google Scholar 

  16. G.S. Rose, J. Rajendran, H. Manem, R. Karri, R.E. Pino, Proc. IEEE 100(6), 2033 (2012)

    Article  Google Scholar 

  17. G. Medeiros-Ribeiro, J.H. Nickel, J.J. Yang, in 2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 246–249 (2011)

  18. S. Kvatinsky, N. Wald, G. Satat, A. Kolodny, U.C. Weiser, E.G. Friedman, in 2012 13th International Workshop on Cellular Nanoscale Networks and their Applications, pp. 1–6 (2012)

  19. Y.V. Pershin, M.D. Ventra, Neural Netw. 23(7), 881 (2010). https://doi.org/10.1016/j.neunet.2010.05.001

    Article  Google Scholar 

  20. D. Hong, Z. **ong, C. Yang, Discrete Dyn. Nat. Soc. 2018, 1 (2018). https://doi.org/10.1155/2018/8126127

    Article  CAS  Google Scholar 

  21. L. Wang, Y. Shen, Q. Yin, G. Zhang, IEEE Trans. Neural Netw. Learn. Syst. 26(9), 2033 (2015)

    Article  Google Scholar 

  22. I.E. Ebong, P. Mazumder, Proc. IEEE 100(6), 2050 (2012)

    Article  Google Scholar 

  23. A. Buscarino, L. Fortuna, M. Frasca, L. Valentina Gambuzza, Chaos Interdiscip J. Nonlinear Sci. 22(2), 023136 (2012). https://doi.org/10.1063/1.4729135

    Article  Google Scholar 

  24. J. Sun, Y. Shen, Q. Yin, C. Xu, Chaos Interdiscip J. Nonlinear Sci. 23(1), 013140 (2013). https://doi.org/10.1063/1.4794794

    Article  Google Scholar 

  25. S.S. Sarwar, S.A.N. Saqueb, F. Quaiyum, A.B.M.H. Rashid, IEEE Access 1, 29 (2013)

    Article  Google Scholar 

  26. Z. Biolek, D. Biolek, V. Biolková, Radioengineering 18(2), 210–214 (2009)

    Google Scholar 

  27. S. Kvatinsky, K. Talisveyberg, D. Fliter, A. Kolodny, U.C. Weiser, E.G. Friedman, in 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel, pp. 1–5 (2012)

  28. B.R. Jackson, Y. Zheng, C.E. Saavedra, in 2007 IEEE International Symposium on Circuits and Systems, pp. 2534–2537 (2007)

  29. Z. Liu, Y. Wu, C. Zhao, J. Benedikt, K. Kang, IEEE Access 6, 54139 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Vidhyadharan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abhay, S.V., Vidhyadharan, S. TiO2−x–TiO2 Memristor Applications for Programmable Analog VLSI Circuits at 45 nm CMOS Technology Node. Trans. Electr. Electron. Mater. 22, 452–458 (2021). https://doi.org/10.1007/s42341-020-00253-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-020-00253-5

Keywords

Navigation