Log in

β-Amylase Squirting Cucumber Between Immobilization, Kinetic Modeling and Application for Maltose Syrup Production

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

A β-amylase extracted from Ecballium elaterium was purified on Q-Sepharose anion exchange chromatography and identified with molecular mass. A successful immobilization by adsorption onto a matrix of titanium dioxide-cellulose acetate butyrate and copolymer of acrylonitrile-acrylamide yielded 32.17%. Thermal stability approved that Ecballium β-amylase retained 89.21% of its initial activity (IA) after 180 min at 70 °C. A promoted catalytic activity was revealed at 70 °C and pH 7.5 with the immobilization procedure. The heterogeneous system based on the process of the substrate conversion degree (α) was studied kinetically via the modified Prout–Tompkins topochemical equation. α increased in accordance with the temperature increase up to 100 min of the reaction time. At 30 °C only 7.6% of optimum conversion degree was lost after 3 h. Power factor (χ) was equal to 1.16. An accomplished application of Ecballium β-amylase proved that it could be a good candidate to produce maltose syrup due to the highest maltose content of 52.9% after 8 h hydrolysis. It will be also very useful during manufacturing processes to minimize starch saccharification time even enzymatic liquefaction costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

All data generated or analysed during this study are included in this article.

References

  1. Karim A, Bibi Z, Nawaz MA, Aman A, Qader SAU (2021) Thermodynamics, kinetics and optimization of catalytic behavior of polyacrylamide-entrapped carboxymethyl cellulase (CMCase) for prospective industrial use. Bioprocess Biosyst Eng 44:2417–2427

    Article  CAS  PubMed  Google Scholar 

  2. Anigboro AA, Ajoh AI, Avwioroko OJ, Ehwarieme DA, Tonukari NJ (2023) Solid-state fermentation of Cassava (Manihot esculenta) peels using Rhizopus oligosporus: application of the fermented peels in yeast production and characterization of α-amylase enzyme produced in the process. Chemistry Africa 6:1669–1678. https://doi.org/10.1007/s42250-022-00582-3

    Article  CAS  Google Scholar 

  3. Cheng W, Sun Y, **a X, Yang L, Fan M, Li Y, Wang L, Qian H (2022) Effects of β-amylase treatment conditions on the gelatinization and retrogradation characteristics of wheat starch. Food Hydrocolloids 124:107286

    Article  CAS  Google Scholar 

  4. DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42:6437–6474

    Article  CAS  PubMed  Google Scholar 

  5. Dos Santos JCS, Bonazza HL, de Matos LJBL, Carneiro EA, Barbosa O, Fernandez-Lafuente R, Gonçalves LRB, de Sant’Ana HB, Santiago-Aguiar RS (2017) Immobilization of CALB on activated chitosan: Application to enzymatic synthesis in supercritical and near-critical carbon dioxide. Biotechnol Rep 14:16–26

    Article  Google Scholar 

  6. Kahraman MV, Bayramoglu G, Kayaman-Apohan N, Gungor A (2007) α-Amylase immobilization on functionalized glass beads by covalent attachment. Food Chem 104:1385–1392

    Article  CAS  Google Scholar 

  7. Reshmi R, Sanjay G, Sugunan S (2006) Enhanced activity and stability of α- amylase immobilized on alumina. Cat Comm 7:460–465

    Article  CAS  Google Scholar 

  8. Cinar K, Gunes G, Gulec HA (2020) Enzymatic synthesis of prebiotic carbohydrates from lactose: Kinetics and optimization of transgalactosylation activity of β-galactosidase from Aspergillus oryzae. J Food Process Eng 43:e13435. https://doi.org/10.1111/jfpe.13435

    Article  CAS  Google Scholar 

  9. Azelee NIW, Nordin N, Illias M, Manas NHA, Ghazali MNFM (2020) Enzyme kinetics study for heterogeneous system of pretreated kenaf hydrolysis. Pertanika J Sci Technol 28:197–216

    Article  Google Scholar 

  10. Valcheva E, Veleva S, Valchev I, Dimitrov I (2000) Kinetic model of xylanase action on kraft pulp. React Kin Cat Lett 71:231–238. https://doi.org/10.1023/A:1010310706612

    Article  CAS  Google Scholar 

  11. Lahmar I, Radeva G, Marinkova D, Velitchkova M, Belghith H, Ben abdallahYotovaBelghith FLK (2018) Immobilization and topochemical mechanism of a new β-amylase extracted from Pergularia tomentosa. Proc Biochem 64:143–151

    Article  CAS  Google Scholar 

  12. Lahmar I, Radeva G, Marinkova D, Velitchkova M, Belghith H, Ben Abdallah F, Yotova L, Belghith K (2018) Valorization of a plant β-amylase: immobilization and dataset on the kinetic process. Data Brief 16:386–391. https://doi.org/10.1016/j.dib.2017.11.071

    Article  PubMed  Google Scholar 

  13. Lahmar I, Radeva G, Marinkova D, Velitchkova M, Lyubov Y (2023) Exponential equation describing kinetic process of immobilized β-Amylase extracted from Glycine max seeds. Chemistry Africa. https://doi.org/10.1007/s42250-023-00721-4

    Article  Google Scholar 

  14. Li W, Bai Y, Mousaa SAS, Zhang Q, Shen Q (2011) Effect of high hydrostatic pressure on physicochemical and structural properties of rice starch. Food BiopTech 5:2233–2241. https://doi.org/10.1007/s11947-011-0542-6

    Article  CAS  Google Scholar 

  15. Lahmar I, Ben Nasri-Ayachi M, Belghith K (2022) Laticifer identification, rubber characterization, phenolic content, and antioxidant activity of Pergularia tomentosa latex extract. BioMed Res Int 2022:1–8. https://doi.org/10.1155/2022/7158905

    Article  CAS  Google Scholar 

  16. Chan KT, Meng FY, Li Q, Ho CY, Lam TS, To Y, Lee WH, Li M, Chu KH, Toh M (2010) Cucurbitacin B induces apoptosis and S phase cell cycle arrest in BEL-7402 human hepatocellular carcinoma cells and is effective via oral administration. Cancer Lett 249:118–124

    Article  Google Scholar 

  17. Sakat S, Jukevar AR, Gambhire MN (2010) In vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis corniculata Linn. Int J Pharm Pharm Sci 2:146–155

    Google Scholar 

  18. Marinkova D, Yotova L, Ringeard JM, Griesmar P (2014) Influence of Ni2+ on urease activity produced by biofilms of Arthocbacter oxydans 1388. Biotech Biotechn Equip 28:226–270

    Google Scholar 

  19. Marinkova D, Danalev D, Serfaty S, Yotova L, Caplain E, Griemar P (2012) Characterization of new titanium oxide polymer hybrid membranes for biofilm formation. Phos Sulph Sil Rel Elem 187:926–936

    CAS  Google Scholar 

  20. Lahmar I, El Abed H, Khemakhem B, Belghith H, Ben Abdallah F, Belghith K (2017) Optimization, purification, and starch stain wash application of two new α-amylases extracted from leaves and stems of Pergularia tomentosa. BioMed Res Int 2017:1–9. https://doi.org/10.1155/2017/6712742

    Article  CAS  Google Scholar 

  21. Lahmar I, Yotova L (2016) Investigation of different enzyme activities from Pergularia tomentosa L. and Ecballium elaterium L. J Chem Techn Metal 51:263–270

    Google Scholar 

  22. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  23. Yotova L, Ivanov I (2000) Kinetic studies and analytical application of cholesterol oxidase and peroxidase immobilized to synthetic polymer. Appl Biochem Biotech 87:141–151

    Article  CAS  Google Scholar 

  24. Tolbert NE (1973) Activation of polyphenol oxidase of chloroplasts. Plant Physiol 51:234–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bernfeld P (1955) Amylases α and β. In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Academic Press, New York

    Google Scholar 

  26. Valcheva E, Valchev I, Yotova L (2011) Kinetics of enzyme action of Cartazyme NS-10 prior to bleaching of kraft pulp. Bioch Eng J 7:223–226

    Article  Google Scholar 

  27. Singh K, Ahmad F, Singh VK, Kayastha K, Kayastha AM (2017) Purification, biochemical characterization and Insilico modeling of α-amylase from Vicia faba. J Mol Liq 234:133–141

    Article  CAS  Google Scholar 

  28. Singh K, Kayastha AM (2014) α-amylase from wheat (Triticum aestivum) seeds: Its purification, biochemical attributes and active site studies. Food Chem 162:1–9

    Article  CAS  PubMed  Google Scholar 

  29. Sottirattanapan P, Nantachai K, Daduang S, Funahashi T, Yamad M (2017) Purification and characterization of amylase from roots of Paederia foetida Linn. Biocat Agric Biotech 10:329–335

    Article  CAS  Google Scholar 

  30. Silva JNCA, Miranda S, Bolina ICA, Silva WC, Hirata DB, Castro HF, Mendes AA (2014) Immobilization of porcine pancreatic lipase on poly-hydroxybutyrate particles for the production of ethyl esters from macaw palm oils and pineapple flavor. Biochem Eng J 82:139–149

    Article  CAS  Google Scholar 

  31. Das R, Talat M, Srivastava ON, Kayastha AM (2018) Covalent immobilization of peanut β-amylase for producing industrial nanobiocatalysts: a comparative study of kinetics, stability and reusability of the immobilized enzyme. Food Chem 245:488–499

    Article  CAS  PubMed  Google Scholar 

  32. Lage FAP, Bassi JJ, Corradini MCC, Todero LM, Luiz JHH, Mendes AA (2016) Preparation of a biocatalyst via physical adsorption of lipase from Thermomyces lanuginosus on hydrophobic support to catalyze biolubricant synthesis by esterification reaction in a solvent-free system. Enz Microb Techn 84:56–67

    Article  CAS  Google Scholar 

  33. Sagu ST, Nso EJ, Homann T, Kapseu C, Rawel HM (2015) Extraction and purification of β-amylase from by three phase partitioning. Food Chem 183:144–153

    Article  CAS  PubMed  Google Scholar 

  34. Pal A, Khanum F (2011) Covalent immobilization of xylanase on glutaraldehyde activated alginate beads using response surface methodology: characterization of immobilized enzyme. Proc Biochem 46:1315–1322

    Article  CAS  Google Scholar 

  35. Naidu MA, Saranraj P (2013) Bacterial amylase: a review. Int J Phar Biol Archiv 4:274–287

    Google Scholar 

  36. Samanta S, Das A, Halder SK, Jana A, Kar S, Mohapatra PKD, Pati B, Mondal KC (2014) Thermodynamic and kinetic characteristics of an α-amylase from Bacillus licheniformis SKB4. Acta Biol Szeged 58:147–156

    Google Scholar 

  37. Wang H, Wenz G (2013) Topochemical control of the photodimerization of aromatic compounds by y-cyclodextrin thioethers aqueous solution. Beilstein J Org Chem 9:1858–1866

    Article  PubMed  PubMed Central  Google Scholar 

  38. Radeva G, Veleva S, Valcheva E (2008) A Correlation between the kinetic and thermodynamic adsorption characteristics of an optical brightener on a pulp surface. Ads Sci Techn 26:515–521

    Article  CAS  Google Scholar 

  39. Duan X, Zhu Q, Zhang X, Huang Y (2021) Expression, biochemical and structural characterization of high-specific-activity β-amylase from Bacillus aryabhattai GEL-09 for application in starch hydrolysis. Microb Cell Fact 20:1–14. https://doi.org/10.1186/s12934-021-01649-5

    Article  CAS  Google Scholar 

  40. Mihajlovski KR, Radovanović NR, Veljović ĐN, Šiler-Marinković SS, Dimitrijević-Branković SI (2016) Improved beta-amylase production on molasses and sugar beet pulp by a novel strain Paenibacillus chitinolyticus CKS1. Ind Crops Prod 80:115–121

    Article  CAS  Google Scholar 

  41. Sun Y, Duan X, Wang L, Wu J (2016) Enhanced maltose production through mutagenesis of acceptor binding subsite + 2 in Bacillus stearothermophilus maltogenic amylase. J Biotechnol 217:53–61

    Article  CAS  PubMed  Google Scholar 

  42. Li S, Zuo ZR, Niu DD, Singh S, Permaul K, Prior BA, Shi GY, Wang ZX (2011) Gene cloning, heterologous expression, and characterization of a high maltose-producing α-amylase of Rhizopus oryzae. Appl Biochem Biotech 164:581–592

    Article  CAS  Google Scholar 

  43. Wang YC, Zhao N, Ma JW, Yan QJ, Jiang ZQ (2019) High-level expression of a novel α-amylase from Thermomyces dupontii in Pichia pastoris and its application in maltose syrup production. Int J Bio Macro 127:683–692. https://doi.org/10.1016/j.ijbiomac.2019.01.162

    Article  CAS  Google Scholar 

Download references

Funding

The authors do not receive any funding from an external source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imen Lahmar.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest associated with this publication. All authors have read and agreed to the publication of the manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahmar, I., Velitchkova, M., Radeva, G. et al. β-Amylase Squirting Cucumber Between Immobilization, Kinetic Modeling and Application for Maltose Syrup Production. Chemistry Africa 7, 1293–1301 (2024). https://doi.org/10.1007/s42250-023-00833-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00833-x

Keywords

Navigation