Log in

Unraveling the Phytochemical Profile Variability and Antioxidant Activities of Different Parts of Ammi visnaga (L) Collected from Taounate Region

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Ammi visnaga is a very popular medicinal plant well known for its biological properties afforded by its dense chemical composition highly dependent on environmental factors. The present study was designed to examine the antioxidant potencies using four complementary assays (Total phenolic content (TPC), total antioxidant capacity (TAC), dihydroxycinnamic acid derivative content (HCA), and cupric ion reducing antioxidant capacity (CUPRAC)) as well as the phenolic profile of different parts of Moroccan Ammi visnaga. The obtained results showed that the flower extract registered the highest amount of TPC (49,71 ± 0,12 mg GAE/g) and antioxidant activity TAC (62.07 ± 2.98 mg AAE/g). Concerning the phenolic profile, the most abundant individual phenolic compounds found in high amounts are chlorogenic acid (56.03%, 11.23% and 32.29 for stem, leaves and flowers, respectively), isorhamnetin_3-O-rutinoside (17.86%, 12.16% and 19.01% for stem, leaves and flowers, respectively), isorhamnetin_3-O-glucoside (15.96%, 10.69%, 10.37% for stem, leaves and flowers, respectively), quercetin_3-O-glucoside (1.61%, 21.11% and 2.85% for stem, leaves and flowers, respectively), kaempferol_3-O-glucoside (1.04%, 3.17% and 7.40% for stem, leaves and flowers, respectively) and isorhamnetin (0.57% 7.59% and 2.77% for stem, leaves and flowers, respectively). The outcomes of this study showed that different parts of A. visnaga contain several bioactive compounds with unique biological properties, so the data required further validation using experimental models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article.

References

  1. Franchi GG, Bovalini L, Martelli P, Ferri S, Sbardellati E (1985) High performance liquid chromatography analysis of the furanochromones khellin and visnagin in various organs of Ammi visnaga (L.) Lam. At different developmental stages. J Ethnopharmacol 14:203–212. https://doi.org/10.1016/0378-8741(85)90088-1

    Article  CAS  PubMed  Google Scholar 

  2. Koriem KMM, Arbid MS, El-Attar MA (2019) Acute and subacute toxicity of Ammi visnaga on rats. Interdisciplinary Toxicol 12:26–35. https://doi.org/10.2478/intox-2019-0004

    Article  CAS  Google Scholar 

  3. Khalil N, Bishr M, Desouky S, Salama O (2020) Ammi Visnaga L., a potential medicinal plant: a review. Molecules 25:1–18. https://doi.org/10.3390/molecules25020301

    Article  CAS  Google Scholar 

  4. Khalil N, Bishr M, Desouky S, Salama O (2020) Ammi Visnaga L., a potential Medicinal Plant: a review. Molecules 25:301. https://doi.org/10.3390/molecules25020301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sayed MD (1980) Traditional medicine in health care. J Ethnopharmacol 2:19–22. https://doi.org/10.1016/0378-8741(80)90023-9

    Article  CAS  PubMed  Google Scholar 

  6. Jouad H, Maghrani M, Eddouks M (2002) Hypoglycemic effect of aqueous extract of Ammi visnaga in normal and streptozotocin-induced diabetic rats. J Herbal Pharmacother 2:19–29

    Article  Google Scholar 

  7. Khan ZA, Assiri AM, Al-Afghani HMA, Maghrabi TMA (2001) Inhibition of oxalate nephrolithiasis with Ammi visnaga (AI-Khillah). Int Urol Nephrol 33:605–608. https://doi.org/10.1023/A:1020526517097

    Article  CAS  PubMed  Google Scholar 

  8. Arafah MW, Almutairi B, Al-Zharani M, Alkahtane AA, Al-Otibi FO, Ali D, Alghamdi WM, Alanazi IS, Aljarba NH, Alhoshani NM, AL-Johani NS, Alkeraishan N, Alhenaky A, Alarifi S, Alkahtani S (2021) The protective effect of Ammi visnaga extract against human hepatic cancer. J King Saud Univ - Sci 33:101540. https://doi.org/10.1016/j.jksus.2021.101540

    Article  Google Scholar 

  9. Ahmed SST, Fahim JR, Youssif KA, AboulMagd AM, Amin MN, Abdelmohsen UR, Hamed ANE (2022) Metabolomics of the secondary metabolites of Ammi visnaga L. roots (family Apiaceae) and evaluation of their biological potential. South Afr J Bot 149:860–869. https://doi.org/10.1016/j.sajb.2022.01.011

    Article  CAS  Google Scholar 

  10. Chu AJ (2022) Quarter-century explorations of bioactive polyphenols: diverse health benefits. Front Bioscience-Landmark 27:134

    Article  CAS  Google Scholar 

  11. Saima H, Asad J, Marwat KB, Khan MA (2014) Phytochemistry and medicinal properties of Ammi visnaga (Apiacae). Pak J Bot 46:861–867

    Google Scholar 

  12. Aourabi S, Driouch M, Sfaira M, Mahjoubi F, Hammouti B, Verma C, Ebenso EE, Guo L (2021) Phenolic fraction of Ammi visnaga extract as environmentally friendly antioxidant and corrosion inhibitor for mild steel in acidic medium. J Mol Liq 323:114950. https://doi.org/10.1016/j.molliq.2020.114950

    Article  CAS  Google Scholar 

  13. Miho H, Díez CM, Mena-Bravo A, de Medina VS, Moral J, Melliou E, Magiatis P, Rallo L, Barranco D, Priego-Capote F (2018) Cultivar influence on variability in olive oil phenolic profiles determined through an extensive germplasm survey. Food Chem 266:192–199

    Article  CAS  PubMed  Google Scholar 

  14. Criado-Navarro I, López-Bascón MA, Priego-Capote F (2020) Evaluating the variability in the phenolic concentration of extra virgin olive oil according to the Commission regulation (EU) 432/2012 health claim. J Agric Food Chem 68:9070–9080

    Article  CAS  PubMed  Google Scholar 

  15. Feduraev P, Skrypnik L, Nebreeva S, Dzhobadze G, Vatagina A, Kalinina E, Pungin A, Maslennikov P, Riabova A, Krol O (2022) Variability of phenolic compound accumulation and antioxidant activity in wild plants of some Rumex species (Polygonaceae). Antioxidants 11:311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. El Kamari F, Ousaaid D, Taroq A, El Atki Y, Aouam I, Lyoussi B, Abdellaoui A (2021) Bioactive ingredients of different extracts of Vitex agnus-castus L. Fruits from Morocco and their antioxidant potential. Jordan J Biol Sci 14

  17. El Jabboury Z, Aazza S, Ousaaid D, Chater O, Squalli W, El Ghadraoui O, Benjelloun M, El Ghadraoui L (2022) Optimisation of total phenolic compound extraction and antioxidant activity from dried inflorescence of Ammi Visnaga using Mixture Design and Triangular Surfaces. Jordan J Biol Sci 15

  18. Hasperué JH, Rodoni LM, Guardianelli LM, Chaves AR, Martínez GA (2016) Use of LED light for Brussels sprouts postharvest conservation. Sci Hort 213:281–286. https://doi.org/10.1016/j.scienta.2016.11.004

    Article  CAS  Google Scholar 

  19. Fraisse D, Felgines C, Texier O, Lamaison J-L (2011) Caffeoyl Derivatives: Major Antioxidant Compounds of Some Wild Herbs of the Asteraceae Family. Food and Nutrition Sciences 02:181–192. https://doi.org/10.4236/fns.2011.230025.

  20. Laaroussi H, Bouddine T, Bakour M, Ousaaid D, Lyoussi B (2020) Physicochemical properties, mineral content, antioxidant activities, and microbiological quality of Bupleurum spinosum Gouan honey from the middle atlas in Morocco. Journal of Food Quality 2020

  21. Yilar M, Bayar Y, Bayar AAA, Genç N (2020) Chemical composition of the essential oil of Salvia bracteata banks and the biological activity of its extracts: antioxidant, total phenolic, total flavonoid, antifungal and allelopathic effects. Bot Serbica 44:71–79. https://doi.org/10.2298/BOTSERB2001071Y

    Article  Google Scholar 

  22. Ousaaid D, Laaroussi H, Bakour M, El Ghouizi A, Mechchate H, Es-safi I, Conte R, Lyoussi B, El Arabi I (2022) New Insights into Phytochemical Content and antioxidant activities of moroccan Fruit Vinegars. Chemistry Africa. https://doi.org/10.1007/s42250-022-00427-z

  23. Skorić M, Ćirić A, Budimir S, Janošević D, Anđelković B, Todosijević M, Todorović S, Soković M, Glamočlija J, Tešević V, Gašić U, Mišić D, Kanellis AK (2022) Bioactivity-guided identification and isolation of a major antimicrobial compound in Cistus creticus subsp. creticus leaves and resin “ladano. Ind Crops Prod 184:114992. https://doi.org/10.1016/j.indcrop.2022.114992

    Article  CAS  Google Scholar 

  24. El Karkouri J, Drioiche A, Soro A, Ailli A, Benhlima N, Bouzoubaa A, El Makhoukhi F, Oulhaj H, Elombo FK, Zair T (2020) Identification and antioxidant activity of Ammi Visnaga L. Polyphenols from the Middle Atlas in Morocco. Mediterranean J Chem 10:649

    Article  Google Scholar 

  25. Akbary R, Golkar P (2023) Elicitation of medicinally-valuable secondary metabolites, enzymatic, and antioxidant activity using chitin and yeast extract in callus cultures of Ammi visnaga L. Plant Cell Tiss Organ Cult. https://doi.org/10.1007/s11240-023-02543-1

  26. Amin JN, Murad A, Motasem A-M, Ibrahem SR, Ass’ad JM, Ayed AM (2015) Phytochemical screening and in-vitro evaluation of antioxidant and antimicrobial activities of the entire Khella plant (Ammi visnaga. L.) a member of palestinian flora. Int J Pharmacogn Phytochem Res 7:137–143

    Google Scholar 

  27. Pires TCSP, Dias MI, Barros L, Calhelha RC, Alves MJ, Oliveira MBPP, Santos-Buelga C, Ferreira ICFR (2018) Edible flowers as sources of phenolic compounds with bioactive potential. Food Res Int 105:580–588. https://doi.org/10.1016/j.foodres.2017.11.014

    Article  CAS  PubMed  Google Scholar 

  28. Gajbhiye NA, Makasana J, Kumar S (2015) Accumulation of three important bioactive compounds in different plant parts of Withania somnifera and its determination by the LC–ESI-MS-MS (MRM) method. J Chromatogr Sci 53:1749–1756

    Article  CAS  PubMed  Google Scholar 

  29. Livadariu O, Maximilian C, Rahmanifar B, Cornea CP (2023) LED technology Applied to Plant Development for promoting the Accumulation of Bioactive Compounds: a review. Plants 12:1075. https://doi.org/10.3390/plants12051075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hashim S, Jan A, Marwat KB, Khan MA (2014) Phytochemistry and medicinal properties of Ammi visnaga (Apiacae). Pak J Bot 46:861–867

    CAS  Google Scholar 

  31. Abdul-Jalil TZ, Saour K, Nasser AM (2010) Phytochemical study of some flavonoids present in the fruits of two Ammi L. species wildly grown in Iraq. Iraqi J Pharm Sci 19:48–57

    Google Scholar 

  32. Zaher A, Aslam R, Lee H, Khafouri A, Boufellous M, Alrashdi AA, El Y, Lgaz H, Ouhssine M (2022) ORIGINAL ARTICLE a combined computational & electrochemical exploration of the Ammi visnaga L. extract as a green corrosion inhibitor for carbon steel in HCl solution. Arab J Chem 15:103573. https://doi.org/10.1016/j.arabjc.2021.103573

    Article  CAS  Google Scholar 

  33. Harborne JB, King L (1976) Flavonoid Sulphates in the Umbelliferae. 4:111–115

  34. Activity A, Apiaceae L, Bencheraiet R, Kherrab H, Kabouche A, Substances O, De De, Chimie D (2011) Flavonols and Antioxidant Activity of Ammi visnaga L. (Apiaceae)

  35. Ahmed SST, Fahim JR, Youssif KA, AboulMagd AM, Amin MN, Abdelmohsen UR, Hamed ANE (2022) Metabolomics of the secondary metabolites of Ammi visnaga L. roots (family Apiaceae) and evaluation of their biological potential. South Afr J Bot 149:860–869. https://doi.org/10.1016/j.sajb.2022.01.011

    Article  CAS  Google Scholar 

  36. Seth G, Guthrie D (1936) Letters to the editor. J Laryngology Otology 51:138–139. https://doi.org/10.1017/S0022215100042249

    Article  Google Scholar 

  37. Preetha Rani MR, Salin Raj P, Nair A, Ranjith S, Rajankutty K, Raghu KG (2022) In vitro and in vivo studies reveal the beneficial effects of chlorogenic acid against ER stress mediated ER-phagy and associated apoptosis in the heart of diabetic rat. Chemico-Biol Interact 351:109755. https://doi.org/10.1016/j.cbi.2021.109755

    Article  CAS  Google Scholar 

  38. Liu H, Chen P, Lv X, Zhou Y, Li X, Ma S, Zhao J (2022) Effects of Chlorogenic Acid on Performance, Anticoccidial indicators, immunity, antioxidant status, and intestinal barrier function in Coccidia-Infected broilers. Animals 12:. https://doi.org/10.3390/ani12080963

  39. Talib WH, Abuawad A, Thiab S, Alshweiat A, Mahmod AI (2022) Flavonoid-based nanomedicines to target tumor microenvironment. OpenNano 8:100081. https://doi.org/10.1016/j.onano.2022.100081

    Article  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Driss Ousaaid.

Ethics declarations

Conflict of Interest

the authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabboury, Z.E., Ousaaid, D., Gašić, U. et al. Unraveling the Phytochemical Profile Variability and Antioxidant Activities of Different Parts of Ammi visnaga (L) Collected from Taounate Region. Chemistry Africa 7, 71–77 (2024). https://doi.org/10.1007/s42250-023-00747-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00747-8

Keywords

Navigation