Log in

Bio-Assisted Synthesis of Zinc Oxide Nanoparticles from Mimosa pudica Aqueous Leave Extract: Structure and Antibacterial Activity

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

This study reported a novel synthesis of zinc oxide nanoparticles from Mimosa pudica leaves aqueous extract and a chemical method. Synthesis conditions were optimized for the maximum range synthesis of zinc oxide nanoparticles. Mimosa pudica aqueous leaf extract successfully synthesized zinc oxide with a mild bio-stabilizing effect. The resultant powder was characterized using various analytical techniques such as X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), UV–visible spectrometry and Infra-red spectroscopy. Antibacterial activity of the ZnO nanopowder was also carried out. Zinc Oxide nanoparticles (ZnO NPs) from the green route exhibited a slightly lower zone of inhibition of microorganisms than ZnO NPs from the chemical route because of their proximity in size. The SEM report showed that greenly synthesized Zinc Oxide Nanoparticles (GZP) were rod-like while chemically synthesized Zinc Oxide Nanoparticles (CZP) were dumbbell in shape with sizes 101.8 nm and 100.9 nm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ali J, Irshad R, Li B, Tahir K, Ahmad A, Shakeel M, Khan NU, Khan ZUH (2018) Synthesis and characterization of phytochemical fabricated zinc oxide nanoparticles with enhanced antibacterial and catalytic applications. J Photochem Photobiol B 183:349–356

    Article  CAS  PubMed  Google Scholar 

  2. Upadhyaya H, Shome S, Sarma R, Tewari S, Bhattacharya MK, Panda SK (2018) Green synthesis, characterization and antibacterial activity of ZnO nanoparticles. Am J Plant Sci 9:1279–1291

    Article  CAS  Google Scholar 

  3. Diallo A, Ngom B, Park E, Maaza M (2015) Green synthesis of ZnO nanoparticles by Aspalathus linearis: structural & optical properties. J Alloy Compd 646:425–430

    Article  CAS  Google Scholar 

  4. Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V (2005) Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2:194–205

    Article  CAS  PubMed  Google Scholar 

  5. Taimoory SM, Rahdar A, Aliahmad M, Sadeghfar F, Ha**ezhad MR, Jahantigh M, Shahbazi P, Trant JF (2018) The synthesis and characterization of a magnetite nanoparticle with potent antibacterial activity and low mammalian toxicity. J Mol Liq 265:96–104

    Article  CAS  Google Scholar 

  6. Hu TY, Frieman M, Wolfram J (2020) Insights from nanomedicine into chloroquine efficacy against COVID-19. Nat Nanotechnol 15:247–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Das AK, Kim NH, Pradhan D, Hui D, Lee JH (2018) Electrochemical synthesis of palladium (Pd) nanorods: an efficient electrocatalyst for methanol and hydrazine electro-oxidation. Compos B Eng 144:11–18

    Article  CAS  Google Scholar 

  8. Mansour H, Bargougui R, Autret-Lambert C, Gadri A, Ammar S (2018) Co-precipitation synthesis and characterization of tin-doped α-Fe2O3 nanoparticles with enhanced photocatalytic activities. J Phys Chem Solids 114:1–7

    Article  CAS  Google Scholar 

  9. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Espitia PJP, Soares NdFF, dos Reis Coimbra JS, de Andrade NJ, Cruz RS, Medeiros EAA (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5:1447–1464

    Article  CAS  Google Scholar 

  11. Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18:319–326

    Article  CAS  Google Scholar 

  12. Amar I, Sharif A, Ali M, Alshareef S, Altohami F, Abdulqadir M, Ahwidi M (2020) Removal of methylene blue from aqueous solutions using nano-magnetic adsorbent based on zinc-doped cobalt ferrite. Chem Methodol 4:1–18

    Article  CAS  Google Scholar 

  13. Messaoudi ZA, Lahcene D, Benaissa T, Messaoudi M, Zahraoui B, Belhachemi M, Choukchou-Braham A (2022) Adsorption and photocatalytic degradation of crystal violet dye under sunlight irradiation using natural and modified clays by zinc oxide. Chem Methodol 6:661–676

    CAS  Google Scholar 

  14. TaghaviFardood S, Moradnia F, Moradi S, Forootan R, YekkeZare F, Heidari M (2019) Eco-friendly synthesis and characterization of α-Fe2O3 nanoparticles and study of their photocatalytic activity for degradation of Congo red dye. Nanochem Res 4:140–147

    Google Scholar 

  15. Oluwaniyi OO, Adegoke HI, Adesuji ET, Alabi AB, Bodede SO, Labulo AH, Oseghale CO (2016) Biosynthesis of silver nanoparticles using aqueous leaf extract of Thevetia peruviana Juss and its antimicrobial activities. Appl Nanosci 6:903–912

    Article  CAS  Google Scholar 

  16. Shittu K, Bankole M, Abdulkareem A, Abubakre O, Ubaka A (2017) Application of gold nanoparticles for improved drug efficiency. Adv Nat Sci Nanosci Nanotechnol 8:035014

    Article  Google Scholar 

  17. Vidya C, Hiremath S, Chandraprabha M, Antonyraj ML, Gopal IV, Jain A, Bansal K (2013) Green synthesis of ZnO nanoparticles by Calotropis gigantea. Int J Curr Eng Technol 1:118–120

    Google Scholar 

  18. Mirzaei H, Darroudi M (2017) Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram Int 43:907–914

    Article  CAS  Google Scholar 

  19. Kim T, Hyeon T (2013) Applications of inorganic nanoparticles as therapeutic agents. Nanotechnology 25:012001

    Article  PubMed  Google Scholar 

  20. Sangeetha G, Rajeshwari S, Venckatesh R (2011) Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties. Mater Res Bull 46:2560–2566

    Article  CAS  Google Scholar 

  21. Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27:82–89

    Article  CAS  PubMed  Google Scholar 

  22. Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57

    Article  CAS  Google Scholar 

  23. Sengupta A, Sarkar CK (2015) Introduction to nano: basics to nanoscience and nanotechnology. Springer, New York

    Book  Google Scholar 

  24. Nethavhanani T (2017) Synthesis of zinc oxide nanoparticles by a green process and the investigation of their physical properties

  25. Sabir S, Arshad M, Chaudhari SK (2014) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J 2014:925494

    Article  Google Scholar 

  26. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  CAS  PubMed  Google Scholar 

  27. Alavi M, Nokhodchi A (2021) Synthesis and modification of bio-derived antibacterial Ag and ZnO nanoparticles by plants, fungi, and bacteria. Drug Discov Today 8:1953–1962

    Article  Google Scholar 

  28. Gupta K, Chundawat TS (2020) Zinc oxide nanoparticles synthesized using Fusarium oxysporum to enhance bioethanol production from rice-straw. Biomass Bioenerg 143:105840

    Article  CAS  Google Scholar 

  29. Momeni SS, Nasrollahzadeh M, Rustaiyan A (2016) Green synthesis of the Cu/ZnO nanoparticles mediated by Euphorbia prolifera leaf extract and investigation of their catalytic activity. J Colloid Interface Sci 472:173–179

    Article  CAS  PubMed  Google Scholar 

  30. Sharma JL, Dhayal V, Sharma RK (2021) White-rot fungus mediated green synthesis of zinc oxide nanoparticles and their impregnation on cellulose to develop environmental friendly antimicrobial fibers. 3 Biotech 11:1–10

    Article  Google Scholar 

  31. Perveen R, Shujaat S, Qureshi Z, Nawaz S, Khan M, Iqbal M (2020) Green versus sol-gel synthesis of ZnO nanoparticles and antimicrobial activity evaluation against panel of pathogens. J Market Res 9:7817–7827

    CAS  Google Scholar 

  32. Bala N, Saha S, Chakraborty M, Maiti M, Das S, Basu R, Nandy P (2015) Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv 5:4993–5003

    Article  CAS  Google Scholar 

  33. Santhoshkumar J, Kumar SV, Rajeshkumar S (2017) Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resour Efficient Technol 3:459–465

    Article  Google Scholar 

  34. Ramesh M, Anbuvannan M, Viruthagiri G (2015) Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim Acta Part A Mol Biomol Spectrosc 136:864–870

    Article  CAS  Google Scholar 

  35. Liogier AH (1995) Descriptive flora of Puerto Rico and adjacent islands, La Editorial, UPR

  36. Muhammad G, Hussain MA, Jantan I, Bukhari SNA (2016) Mimosa pudica L., a high-value medicinal plant as a source of bioactives for pharmaceuticals. Comp Rev Food Sci Food Saf 15:303–315

    Article  CAS  Google Scholar 

  37. Joseph B, George J, Mohan J (2013) Pharmacology and traditional uses of Mimosa pudica. Int J Pharm Sci Drug Res 5:41–44

    Google Scholar 

  38. Saraswat R, Pokharkar R (2012) GCMS studies of Mimosa pudica. Int J Pharm Tech Res 4:93–98

    Google Scholar 

  39. Nwaoga J, Okonkwo W, Unachukwu G (2011) 26th European photovoltaic solar energy conference and exhibition, pp. 406–410

  40. Singh B, Doong R-A, Chauhan DS, Dubey AK (2018) Synthesis and characterization of FeO4/polythiophene hybrid nanocomposites for electroanalytical application. Mater Chem Phys 205:462–469

    Article  CAS  Google Scholar 

  41. Azmi L, Singh MK, Akhtar AK (2011) Pharmacological and biological overview on Mimosa pudica Linn. Int J Pharm Life Sci 2:11

    Google Scholar 

  42. Gandhiraja N, Sriram S, Meenaa V, Srilakshmi JK, Sasikumar C, Rajeswari R (2009) Phytochemical screening and antimicrobial activity of the plant extracts of Mimosa pudica L. against selected microbes. Ethnobotanical Leaflets 2009:8

    Google Scholar 

  43. Tamilarasi T, Ananthi T (2012) Phytochemical Analysis and Anti Microbial Activity of Mimosa pudica Linn. Res J Chem Sci ISSN, 2231 (2012) 606X

  44. Harborne A (1998) Phytochemical methods a guide to modern techniques of plant analysis. Springer Science & Business Media, New York

    Google Scholar 

  45. Wu C, Qiao X, Chen J, Wang H, Tan F, Li S (2006) A novel chemical route to prepare ZnO nanoparticles. Mater Lett 60:1828–1832

    Article  CAS  Google Scholar 

  46. Getie S, Belay A, Chandra Reddy A, Belay Z (2017) Synthesis and characterizations of zinc oxide nanoparticles for antibacterial applications. J Nanomedic Nanotechnol 8:2

    Google Scholar 

  47. Sen A, Batra A (2012) Evaluation of antimicrobial activity of different solvent extracts of medicinal plant: Melia azedarach L. Int J Curr Pharm Res 4:67–73

    Google Scholar 

  48. Mohammadi FM, Ghasemi N (2018) Influence of temperature and concentration on biosynthesis and characterization of zinc oxide nanoparticles using cherry extract. J Nanostruct Chem 8:93–102

    Article  CAS  Google Scholar 

  49. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28

    Article  CAS  PubMed  Google Scholar 

  50. Weng X, Guo M, Luo F, Chen Z (2017) One-step green synthesis of bimetallic Fe/Ni nanoparticles by eucalyptus leaf extract: biomolecules identification, characterization and catalytic activity. Chem Eng J 308:904–911

    Article  CAS  Google Scholar 

  51. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356

    Article  CAS  PubMed  Google Scholar 

  52. Sun J, Hu T, Chen C, Zhao D, Yang F, Yang X (2016) Fluorescence immunoassay system via enzyme-enabled in situ synthesis of fluorescent silicon nanoparticles. Anal Chem 88:9789–9795

    Article  CAS  PubMed  Google Scholar 

  53. Yuvakkumar R, Suresh J, Nathanael AJ, Sundrarajan M, Hong S (2014) Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Mater Sci Eng C 41:17–27

    Article  CAS  Google Scholar 

  54. Senthilkumar N, Nandhakumar E, Priya P, Soni D, Vimalan M, Potheher IV (2017) Synthesis of ZnO nanoparticles using leaf extract of Tectona grandis (L) and their anti- bacterial, anti-arthritic, anti-oxidant and in vitro cytotoxicity activities. New J Chem 41:10347–10356

    Article  CAS  Google Scholar 

  55. Khan MF, Ansari AH, Hameedullah M, Ahmad E, Husain FM, Zia Q, Baig U, Zaheer MR, Alam MM, Khan AM (2016) Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: potential role as nano-antibiotics. Sci Rep 6:27689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kour J, Khanna K, Sharma P, Arora P, Dhiman S, Kaur R, Sharma A, Ohri P, Bhardwaj R (2021) Variability, behaviour and impact of nanoparticles in the environment, plant responses to nanomaterials. Springer, New York, pp 315–328

    Book  Google Scholar 

  57. Zare E, Pourseyedi S, Khatami M, Darezereshki E (2017) Simple biosynthesis of zinc oxide nanoparticles using nature’s source, and it’s in vitro bio-activity. J Mol Struct 1146:96–103

    Article  CAS  Google Scholar 

  58. Singh A, Singh N, Hussain I, Singh H, Yadav V, Singh S (2016) Green synthesis of nano zinc oxide and evaluation of its impact on germination and metabolic activity of Solanum lycopersicum. J Biotechnol 233:84–94

    Article  CAS  PubMed  Google Scholar 

  59. Wahab R, Kim Y-S, Hwang I, Shin H-S (2009) A non-aqueous synthesis, characterization of zinc oxide nanoparticles and their interaction with DNA. Synth Met 159:2443–2452

    Article  CAS  Google Scholar 

  60. Wahab R, Ansari S, Seo H-K, Kim YS, Suh E-K, Shin H-S (2009) Low temperature synthesis and characterization of rosette-like nanostructures of ZnO using solution process. Solid State Sci 11:439–443

    Article  CAS  Google Scholar 

  61. Jalal R, Goharshadi EK, Abareshi M, Moosavi M, Yousefi A, Nancarrow P (2010) ZnO nanofluids: green synthesis, characterization, and antibacterial activity. Mater Chem Phys 121:198–201

    Article  CAS  Google Scholar 

  62. Jafarirad S, Mehrabi M, Divband B, Kosari-Nasab M (2016) Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: a mechanistic approach. Mater Sci Eng C 59:296–302

    Article  CAS  Google Scholar 

  63. Talam S, Karumuri SR, Gunnam N (2012) Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. ISRN Nanotechnol 2012:1–6

    Article  Google Scholar 

  64. Zhou J, Zhao F, Wang Y, Zhang Y, Yang L (2007) Size-controlled synthesis of ZnO nanoparticles and their photoluminescence properties. J Lumin 122:195–197

    Article  Google Scholar 

  65. Jamdagni P, Khatri P, Rana J (2018) Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J King Saud Univ Sci 30:168–175

    Article  Google Scholar 

  66. Khoshhesab ZM, Sarfaraz M, Asadabad MA (2011) Preparation of ZnO nanostructures by chemical precipitation method. Synth React Inorg Met-Org Nano-Met Chem 41:814–819

    Article  CAS  Google Scholar 

  67. Jamdagni P, Rana JS, Khatri P, Nehra K (2018) Comparative account of antifungal activity of green and chemically synthesized zinc oxide nanoparticles in combination with agricultural fungicides. Int J Nano Dimens 9:198–208

    CAS  Google Scholar 

  68. Zhang L, Ding Y, Povey M, York D (2008) ZnO nanofluids—a potential antibacterial agent. Prog Nat Sci 18:939–944

    Article  CAS  Google Scholar 

  69. He C, Sasaki T, Shimizu Y, Koshizaki N (2008) Synthesis of ZnO nanoparticles using nanosecond pulsed laser ablation in aqueous media and their self-assembly towards spindle- like ZnO aggregates. Appl Surf Sci 254:2196–2202

    Article  CAS  Google Scholar 

  70. Ramesh P, Rajendran A, Meenakshisundaram M (2014) Green syntheis of zinc oxide nanoparticles using flower extract cassia auriculata. J Nanosci Nanotechnol 2:41–45

    Google Scholar 

  71. Ogunyemi SO, Abdallah Y, Zhang M, Fouad H, Hong X, Ibrahim E, Masum MMI, Hossain A, Mo J, Li B (2019) Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artif Cells Nanomed Biotechnol 47:341–352

    Article  CAS  PubMed  Google Scholar 

  72. Dobrucka R, Długaszewska J (2016) Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J Biol Sci 23:517–523

    Article  CAS  PubMed  Google Scholar 

  73. Yang C, Tang L, Li Q, Bai A, Wang Y, Yu Y (2015) Preparation of monodisperse colloidal ZnO nanoparticles and their optical properties. NANO 10:150322185915002

    Article  Google Scholar 

  74. Kundu D, Hazra C, Chatterjee A, Chaudhari A, Mishra S (2014) Extracellular biosynthesis of zinc oxide nanoparticles using Rhodococcus pyridinivorans NT2: multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon carcinoma. J Photochem Photobiol B 140:194–204

    Article  CAS  PubMed  Google Scholar 

  75. Ukwueze C, Okogwu O, Ebem E, Nwonumara G, Nwodo J (2019) Evaluation of the influence of geographical location on phytochemical composition of Moringa oleifera seeds. World Appl Sci J 37:196–201

    CAS  Google Scholar 

  76. Parvathy P, Murali V, Devi VM, Murugan M, Jmaes JJ (2020) ICP-MS assisted heavy metal analysis, phytochemical, proximate and antioxidant activities of Mimosa pudica L. Mater Today Proc 45:2265–2269

    Article  Google Scholar 

  77. Kühn KP, Chaberny IF, Massholder K, Stickler M, Benz VW, Sonntag H-G, Erdinger L (2003) Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere 53:71–77

    Article  PubMed  Google Scholar 

  78. Ohira T, Yamamoto O, Iida Y, Nakagawa Z-E (2008) Antibacterial activity of ZnO powder with crystallographic orientation. J Mater Sci Mater Med 19:1407–1412

    Article  CAS  PubMed  Google Scholar 

  79. Sawai J, Shoji S, Igarashi H, Hashimoto A, Kokugan T, Shimizu M, Kojima H (1998) Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J Ferment Bioeng 86:521–522

    Article  CAS  Google Scholar 

  80. Kanwal A, Qaseem S, Naeem M, Ali SR, Shaffique M, Maqbool M (2019) Size-dependent inhibition of bacterial growth by chemically engineered spherical ZnO nanoparticles. J Biol Phys 45:147–159

    Article  PubMed  PubMed Central  Google Scholar 

  81. **ng Y, Li X, Zhang L, Xu Q, Che Z, Li W, Bai Y, Li K (2012) Effect of TiO2 nanoparticles on the antibacterial and physical properties of polyethylene-based film. Prog Org Coat 73:219–224

    Article  CAS  Google Scholar 

  82. Janaki AC, Sailatha E, Gunasekaran S (2015) Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 144:17–22

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the management of the University of Ilorin for providing an enabling environment for this research work.

Author information

Authors and Affiliations

Authors

Contributions

The authors read and approved the final manuscript.

Corresponding author

Correspondence to Haleemat Iyabode Adegoke.

Ethics declarations

Conflict of interest

The authors confirm that this article's content has no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adegoke, H.I., Gbenga, A.A. Bio-Assisted Synthesis of Zinc Oxide Nanoparticles from Mimosa pudica Aqueous Leave Extract: Structure and Antibacterial Activity. Chemistry Africa 6, 1283–1296 (2023). https://doi.org/10.1007/s42250-022-00581-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00581-4

Keywords

Navigation