Log in

Experimental corrosion resistance evaluation of Cr–Mo-Mn steel surface modified with titanium and nitrogen ions

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Ionized particles implanted or deposited upon the uppermost region of certain surfaces by alternative ion implantation techniques produce specific changes in the physicochemical properties of metal-type materials; for this reason, there has been a growing interest in studying the effect of surface modification employing a novel technique based on the generation of a high voltage pulsed discharge and electric arc known as three-dimensional ion implantation. By this mechanism, this paper proposes to evaluate the corrosion resistance of a chromium-molybdenum-manganese low alloy exposed to electrochemical attack; AISI/SAE 4140 steel was surface modified by bombarded with titanium species and a hybrid process with titanium + nitrogen for 5 and 10 min. The performance against corrosion was determined by potentiodynamic electrochemical techniques such as Tafel extrapolation, linear polarization resistance, and electrochemical impedance spectroscopy by using a NaCl (3.5% wt.) solution as the electrolyte; the findings demonstrated that non-modified substrates achieved a corrosion rate of 49.37 mpy; in comparison, implanted substrates and exposed for 10 min with Ti were reduced to 2.89 mpy resulting in the best performance compared with other treatments. This comparison allows the conclusion that the surface modification by 3DII applied on AISI/SAE 4140 enhanced its performance against electrochemical corrosion by diminishing up to 90% of the damage caused in saline environments, validating the beneficial use of ion implantation techniques as a possible solution in several structure applications of steels in the engineering sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be available at the request of the interested parties.

References

  1. E.D. Valbuena-Niño, L. Gil, L. Hernández-Molina, J.J. Barba-Ortega, V. Dugar-Zhabon, Characterization of the low alloy steel modified superficially with ions of titanium and nitrogen. CT&F - Ciencia, Tecnol. Futuro 6(3), 127–138 (2016)

    Google Scholar 

  2. D. Peña, P. Fontalvo, H. Estupiñán, D. Niño, W. Vesga, Evaluación experimental de la Resistencia a la corrosión de un acero AISI-SAE 4140 implantado con iones de nitrógeno. DYNA 76(159), 43–52 (2009)

    Google Scholar 

  3. E.D. Valbuena-Niño, H.J. Dulcé, V. Dugar-Zhabon, Caracterización del Acero AISI 4140 implantado por iones Nitrógeno. Rev. Colomb. Fís. 42(3), 387–392 (2010)

    Google Scholar 

  4. V. Muthukumaran, V. Selladura, S. Nandhakumar, M. Senthilkumar, Experimental investigation on corrosion and hardness of ion implanted AISI 316L stainless steel. Mater. Des. 31, 2813–2817 (2010)

    CAS  Google Scholar 

  5. E.D. Valbuena-Niño, V. Dugar-Zhabon, Comportamiento del acero SAE-4140 implantado con iones de nitrógeno en ambientes hidrogenados. Rev. Colomb. Fís. 38(1), 61–64 (2006)

    Google Scholar 

  6. E.D. Valbuena-Niño, L. Gil, L. Hernández, F. Sanabria, Corrosion resistance of a carbon-steel surface modified by three-dimensional ion implantation and electric arc. Adv. Mater. Res. 9(1), 1–14 (2020)

    Google Scholar 

  7. F. Parada-Becerra, P. Tsygankov, V. Dugar-Zhabon, D.Y. Peña, J. Coronado, J. González, E.D. V-Niño, Morphologic evaluation of silicon surface modified with titanium and titanium+nitrogen. Acta Microsc. 28(2), 39–47 (2019)

    Google Scholar 

  8. V.D. Dugar-Zhabon, H.J. Dulcé-Moreno, H.A. Garnica-Villamizar, E.D. Valbuena-Niño, A new method for surface modifications of carbon steels and alloys. Mater. Res. 15(6), 969–973 (2012)

    CAS  Google Scholar 

  9. F. Sanabria, E.D. V-Niño, M. Rincon-Joya, H.A. Estupiñán-Duran, F. Viejo, Surface evaluation of carbon steel doped with nitrogen ions. Rev. UIS Ing. 19(1), 205–212 (2020)

    Google Scholar 

  10. E.D. Valbuena-Niño, J.L. Pinto, V. Dugar-Zhabon, J.A. Henao, Chemical characterization of 4140 steel implanted by nitrogen ions. J. Phys. Conf. Ser. 370(1), 012031:1–7 (2012)

    Google Scholar 

  11. F. Sanabria, F. Viejo, E.D. V-Niño, Performance in saline environment of a carbon steel surface modified by three-dimensional ion implantation. J. Phys. Conf. Ser. 1403(1), 012015:1–7 (2019)

    Google Scholar 

  12. H.J. Dulce-Moreno, P.A. Tsygankov, V. Dugar-Zhabon, E.D. V-Niño, F.F. Parada, Estudio de los haces electrónicos en la descarga eléctrica de alto voltaje a bajas presiones. Puente Rev. Cient. 5(2), 21–26 (2011)

    Google Scholar 

  13. P. Tsygankov, A. Plata, E.D. V-Niño, C. Ochoa, F. Parada, C. Chacón, V. Dugar-Zhabon, Estudio de características voltio-ampéricas y peculiaridades de funcionamiento de un vaporizador de arco en vacío. Rev. Colomb. Fís. 43(2), 458–462 (2011)

    Google Scholar 

  14. V.I. Khvesyuk, P.A. Tsygankov, The use of a high voltage discharge at low pressure for 3D ion implantation. Surf. Coat. Technol. 96(1), 68–74 (1997)

    CAS  Google Scholar 

  15. V.D. Dugar-Jabon, J. Dulce-Moreno, P.A. Tsygankov, High voltage pulse discharge for ion treatment of metals. Rev. Sci. Instrum. 73(2), 828–830 (2002)

    Google Scholar 

  16. V. Ashworth, W.A. Grant, R.P.M. Procter, Ion implantation into metals, in Proceedings of the 3rd International conference on modification of surface properties of metals by ion implantation, 23-26 June 1981-January 1, 1982, 1st edn., ed. by V. Ashworth, W.A. Grant, R.P.M. Procter (Held at UMIST, Manchester, UK, 1984)

    Google Scholar 

  17. L. Wegmann, Ion implantation science and technology, 1st edn., ed. by J.F. Ziegler, 1 January (1984)

  18. S. Mohanty, S. Basak, D. Saran, K. Chatterjee, T. Datta, A. Kumar, C. Prakash, D-M. Chun, S-T. Hong, K.K. Sahu, Advanced surface engineering approaches for exotic applications. Int. J. Precis. Eng. Manuf. (2023). https://doi.org/10.1007/s12541-023-00870-z

  19. E.D. Valbuena-Niño, V. Dugar-Zhabon, H.J. Dulce Moreno, G. Peña Rodríguez, H.A. Garnica, P. Tsygankov, Aplicación de descargas simultáneas de alto voltaje y arco eléctrico para el tratamiento superficial avanzado de metales. Iteckne 9(1), 14–20 (2012)

    Google Scholar 

  20. F. Sanabria, L. Gil, C. Matos, E.D. V-Niño, Experimental evaluation on electrochemical corrosion of ion-implanted medium-carbon steel of titanium and titanium+nitrogen. Acta Microsc. 28(2), 72–86 (2019)

    Google Scholar 

  21. F. Sanabria-Martínez, E.D. V-Niño, L.S. Chacón-Velasco, H.A. Estupiñán-Durán, Electrochemical behavior of a stainless steel superficially modified with Nitrogen by three-dimensional ion implantation. Ing. Investig. 42(1), e85772 (2022)

    Google Scholar 

  22. K. Feng, X. Cai, Z. Li, P. Chu, Improved corrosion resistance of stainless steel 316L by Ti ion implantation. Mater. Lett. 68, 450–452 (2012)

    CAS  Google Scholar 

  23. American Society of Testing Materials (ASTM), Standard guide for preparation of metallographic specimens, ASTM E3–11 (American Society for Testing Materials, West Conshohocken U.S.A) (2011). https://doi.org/10.1520/E0003-11R17

  24. American Society for Testing Materials (ASTM), Standard practice for preparing, cleaning, and evaluating corrosion test specimens, ASTM G1–03 (American Society for Testing Materials, West Conshohocken U.S.A) (2011). https://doi.org/10.1520/G0001-03R17E01

  25. American Society of Testing Materials (ASTM), Standard reference test method for making potentiostatic and potenciodynamic anodic polarization measurements, ASTM G5–94 (American Society for Testing Materials, West Conshohocken U.S.A) (2011). https://doi.org/10.1520/G0005-94R11E01

  26. American Society of Testing Materials (ASTM), Standard practice for conventions applicable to electrochemical measurements in corrosion testing, ASTM G3–14 (American Society for Testing Materials, West Conshohocken U.S.A) (2019). https://doi.org/10.1520/G0003-14R19

  27. American Society of Testing Materials (ASTM), Standard test method for conducting potentiodynamic polarization resistance measurements, ASTM G59–97 (American Society for Testing Materials, West Conshohocken U.S.A) (2014). https://doi.org/10.1520/G0059-97R20

  28. American Society of Testing Materials (ASTM), Standard practice for calculation of corrosion rates and related information from electrochemical measurements, ASTM G102–89 (American Society for Testing Materials, West Conshohocken U.S.A) (2015). https://doi.org/10.1520/G0102-89R15E01

  29. American Society of Testing Materials (ASTM), Standard practice for verification of algorithm and equipment for electrochemical impedance measurements, ASTM G106–89 (American Society for Testing Materials, West Conshohocken U.S.A) (2015). https://doi.org/10.1520/G0106-89R15

  30. B.M. Gurumurthy, M.C. Gowrishankar, S. Sharma, A. Kini, M. Shettar, P. Hiremath, Microstructure authentication on mechanical property of medium carbon Low alloy duplex steels. J. Market. Res. 9(3), 5105–5111 (2020)

    CAS  Google Scholar 

  31. S.A. Zadeh, Erosion-corrosion [Internet]. Introduction to Corrosion - Basics and Advances. IntechOpen; 2023. Available from: https://doi.org/10.5772/intechopen.109106

  32. Y.H. Huang, F.X. Yang, N. Wang, M.L. Zhu, F.Z. Xuan, Improvement of stress corrosion cracking resistance by low cycle fatigue of a CrNiMoV steel. npj Mater. Degrad. 7(58), 1–10 (2023)

    Google Scholar 

  33. American Society of Testing Materials (ASTM), Standard specification for general requirements for steel bars, carbon and alloy, hot-wrought, ASTM A29/A29M-20 (American Society for Testing Materials, West Conshohocken U.S.A) (2005). https://doi.org/10.1520/A0029_A0029M-20

  34. A.C. Pabón-Beltran, F. Sanabria-Martínez, C. Vásquez, J.J. Barba-Ortega, E.D. Valbuena-Niño, Study of concentration depth profiles of the titanium and nitrogen ions by SRIM/TRIM simulation. Ing. Univ. 25(2), 1–16 (2021)

    Google Scholar 

  35. J. Maleki-Ghaleh, M. Khalil-Allafi, M.S. Sadeghpour-Motlagh, S. Shakeri, A. Masoudfar, Y. Farrokhi, A. BeygiKhosrowshahi, M.H. Nadernezhad, M.H. Siadati, M. Javidi, M. Shakiba, Effect of surface modification by nitrogen ion implantation on the electrochemical and cellular behaviors of super-elastic NiTi shape memory alloy. J. Mater. Sci.: Mater. Med. 25(12), 2605–2617 (2014)

    CAS  PubMed  Google Scholar 

  36. E. Leitao, R.A. Silva, M.A. Barbosa, Electrochemical and surface modificationson N ion-implanted 316 L stainless steel. J. Mater. Scence: Mater. Med. 8, 365–368 (1997)

    CAS  Google Scholar 

  37. S. Alkan, M.S. Gök, Influence of plasma nitriding pre-treatment on the corrosion and tribocorrosion behaviours of PVD CrN, TiN and AlTiN coated AISI 4140 steel in seawater. Lubr. Sci. 34(2), 67–83 (2022)

    CAS  Google Scholar 

  38. N. Mosavati, V.R. Chitturi, S. Salley, K.Y. Simon, Comparative study of tribological behavior of TiN hard coatings deposited by various PVD deposition techniques. Coatings 12(3), 294:1–23 (2022)

    Google Scholar 

  39. M. Yang, A.J. Allen, M.T. Nguyen, W. Ralston, M. MacLeod, F. DiSalvo, Corrosion behavior of mesoporous transition metal nitrides. J. Solid State Chem. 205, 49–56 (2013)

    CAS  Google Scholar 

  40. X. **e, C. Chen, J. Luo, J. Xu, The microstructure and tribological properties of M50 steel surface after titanium ion implantation. Appl. Surf. Sci. 564, 1–10 (2021)

    Google Scholar 

  41. T.I. Dorofeeva, M.V. Fedorischeva, T.A. Gubaidulina, O.V. Sergeev, A.R. Sungatulin, V.P. Sergeev, Investigation of corrosion properties and composition of the surface formed on AISI 321 stainless steel by ion implantation. Metals 13(8), 1468:1–15 (2023)

    Google Scholar 

  42. L. Pawłowski, M. Rościszewska, B. Majkowska-Marzec, M. Jażdżewska, M. Bartmański, A. Zieliński, N. Tybuszewska, P. Samsel, Influence of surface modification of titanium and its alloys for medical implants on their corrosion behavior. Materials 15(21), 7556:1–21 (2022)

    Google Scholar 

  43. P. Qin, L.Y. Chen, Y.J. Liu, C.H. Zhao, Y.J. Lu, H. Sun, L.C. Zhang, Corrosion behavior and mechanism of laser powder bed fusion produced CoCrW in an acidic NaCl solution. Corros. Sci. 213(110999), 1–13 (2023)

    Google Scholar 

  44. C. Anandan, V.L. William, S. Ezhil, K.S. Rajam, Electrochemical studies of stainless steel implanted with nitrogen and oxygen by plasma immersion ion implantation. Surf. Coat. Technol. 201(18), 7873–7879 (2007)

    CAS  Google Scholar 

  45. R. Cottis, S. Turgoose, Electrochemical impedance and noise. De Corrosion testing made easy, vol 7 (NACE International, Houston, 1999)

    Google Scholar 

  46. N. Padhy, S. Ningshen, B.K. Panigrahi, M. Kamachi, Corrosion behaviour of nitrogen ion implanted AISI type 304L stainless steel in nitric acid medium. Corros. Sci. 52(1), 104–112 (2010)

    CAS  Google Scholar 

  47. C. Pereira, F.S. De Souza, G. Marin, S.M. Hickel, C. Bindera, A. Nelmo, Corrosion resistance of low-carbon steel modified by plasma nitriding and diamond-like carbon. Diam. Relat. Mater. 80, 54–161 (2017)

    Google Scholar 

  48. C. Liu, Q. Bi, A. Leyland, A. Matthews, An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: part II. EIS interpretation of corrosion behaviour. Corros. Sci. 45(6), 1257–1273 (2003)

    CAS  Google Scholar 

  49. J.C. Galvan et al., In vitro corrosion behaviour of surgical 316LVM stainless steel modified by Si+ implantation–an electrochemical impedance study. J. Alloy. Compd. 676, 414–427 (2016)

    CAS  Google Scholar 

  50. R. Baboian, Corrosion test and standards: application and interpretation, 2nd edn. (American Society for Testing Materials, West Conshohocken. U.S.A., 2005)

    Google Scholar 

  51. A. Jimenez, J.C. Galvan, R. Rodriguez, J.J. De Damborenea, Electrochemical study of the corrosion behaviour of copper surfaces modified by nitrogen ion implantation. J. Appl. Electrochem. 27, 550–557 (1997)

    Google Scholar 

  52. U. Piratoba Morales, E. Vera López, C. Ortiz Otálora, Aspectos básicos en la interpretación de diagramas de impedancia electroquímica. DYNA 77(162), 13–19 (2010)

    Google Scholar 

  53. S. Zhu, X. Sun, X. Gao, J. Wang, N. Zhao, J. Sha, Equivalent circuit model recognition of electrochemical impedance spectroscopy via machine learning. J. Electroanal. Chem. 855(113627), 1–4 (2019)

    Google Scholar 

  54. M. Chang, J. Su, G. Hu, B. Zhai, D. Meng, L. Sun, Y. Chen, Y. Li, Y. Cui, Enhancement of corrosion resistance of a biomedical grade NiTi shape memory alloy by cyclic potentiodynamic polarization in PBS solution. Int. J. Electrochem. Sci. 11, 1092–1098 (2016)

    CAS  Google Scholar 

  55. M. Dong, X. Cui, G. **, H. Wang, Z. Cai, S. Song, Improved microstructure and properties of 12Cr2Ni4A alloy steel by vacuum carburization and Ti+N co-implantation. Appl. Surf. Sci. 440, 660–668 (2018)

    CAS  Google Scholar 

  56. S. Song, X. Cui, G. **, M. Dong, L. Jiang, Ch. Yuan, L. Shi, Effect of N + Cr ions implantation on corrosion and tribological properties in simulated seawater of carburized alloy steel. Surf. Coat. Technol. 385(125357), 1–8 (2020)

    Google Scholar 

  57. Herrera Hernández H, M. Ruiz Reynoso A, C. Trinidad González J, O. González Morán C, G. Miranda Hernández J, Mandujano Ruiz A, et al. Electrochemical Impedance Spectroscopy (EIS): a review study of basic aspects of the corrosion mechanism applied to steels [Internet]. Electrochemical Impedance Spectroscopy. IntechOpen; 2020. Available from: https://doi.org/10.5772/intechopen.94470

  58. T. Daodong, Z. Chengsong, Z. Haoting, H. Wenao, D. Zongkai, C. Dazhi, C. Guodong, High-efficient gas nitridation of AISI 316l austenitic stainless steel by a novel critical temperature nitriding process. Coatings 13(10), 1708:1–16 (2023)

    Google Scholar 

Download references

Funding

This research work was supported by the “Física y Tecnología del Plasma y Corrosión” (FITEK) laboratory; likewise, the authors greatly acknowledge the “Laboratorio de Espectroscopia Atómica y Molecular, Centro de Investigación Científica y Tecnológica en Materiales y Nanociencia, Parque Tecnológico Guatiguará, Universidad Industrial de Santander” and “Centro de Investigación de la Siderúrgica del Orinoco.” This work was partially financed by the Colombian agency Colciencias (now MinCiencias) through doctoral scholarship 617 and a postdoctoral position supplied by Universidad Industrial de Santander associated with grant number 2539.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ely Dannier Valbuena Niño.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanabria-Martínez, F., Lozada, L.E.G., Monrroy-Ceballos, M.I. et al. Experimental corrosion resistance evaluation of Cr–Mo-Mn steel surface modified with titanium and nitrogen ions. emergent mater. 7, 801–814 (2024). https://doi.org/10.1007/s42247-023-00616-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00616-7

Keywords

Navigation