Log in

Elite nanomaterials in cancer detection and therapy

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The development of nanotechnology has completely changed doctor’s perceptions of current cancer treatments. Nanotherapeutics may replace conventional cancer treatment methods like radiotherapy, chemotherapy, and surgery. In this review, we have reviewed the recently-developed multifunctional nanoparticles, i.e., metal nanoparticles, magnetic nanoparticles, carbon-based nanoparticles, and nanocomposites, as well as their uses in the field of cancer research, including diagnostics (including positron emission tomography, computed tomography, magnetic resonance imaging), targeted drug delivery, overcoming multidrug resistance, and therapy (i.e., photothermal therapy, photodynamic therapy, sonodynamic therapy, hyperthermal therapy) efficiently. The drug encapsulation and functional surface modifications of nanoparticles have helped in the reduction of various limitations associated with conventional methods that include site-specific anticancer drug delivery and real-time cancer cell monitoring. The multifunctional antitumor systems based on nanomaterials exhibit tumor cell imaging, reactive oxygen species production with high cytotoxicity, and enhanced tumor inhibition rates. Various mechanisms of cancer cell death such as apoptotic and non-apoptotic (cuproptosis, pyroptosis, and ferroptosis) have also been discussed. Additionally, we have outlined the difficulties, future prospects, benefits, drawbacks, and some clinical data related to nanoparticles utilized in cancer theranostics. In this review, we will classify the fundamental nanomaterials and highlight the development in the field of cancer.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Maurya, S. Tiwari, M.C. Mothukuri, C.M. Tangeda, R.N.S. Nandigam, D.C. Addagiri, A review on recent developments in cancer detection using machine learning and deep learning models. Biomed. Signal Process. Control. 80, 104398 (2023). https://doi.org/10.1016/j.bspc.2022.104398

    Article  Google Scholar 

  2. P. Bisoyi, A brief tour guide to cancer disease. Underst. Cancer From Basics to Ther., 1–20 (2022). https://doi.org/10.1016/B978-0-323-99883-3.00006-8

  3. A. Mahmood, R. Srivastava, Etiology of cancer. Underst. Cancer From Basics to Ther., 37–62 (2022). https://doi.org/10.1016/B978-0-323-99883-3.00008-1

  4. S.B. Prasad, Cancer and apoptosis. Underst. Cancer From Basics to Ther., 103–116 (2022). https://doi.org/10.1016/B978-0-323-99883-3.00015-9

  5. S. Prabhu, K. Prasad, A. Robels-Kelly, X. Lu, AI-based carcinoma detection and classification using histopathological images: a systematic review. Comput. Biol. Med. 142, 105209 (2022). https://doi.org/10.1016/J.COMPBIOMED.2022.105209

    Article  Google Scholar 

  6. A. Pulumati, A. Pulumati, B.S. Dwarakanath, A. Verma, R.V.L. Papineni, Technological advancements in cancer diagnostics: improvements and limitations. Cancer Rep. 6 (2023). https://doi.org/10.1002/CNR2.1764

  7. W. Yin, F. Pan, J. Zhu, J. Xu, D. Gonzalez-Rivas, M. Okumura, Z. Tang, Y. Yang, Nanotechnology and nanomedicine: a promising avenue for lung cancer diagnosis and therapy. Engineering. 7, 1577–1585 (2021). https://doi.org/10.1016/J.ENG.2020.04.017

    Article  CAS  Google Scholar 

  8. I. Khan, K. Saeed, I. Khan, Nanoparticles: properties, applications and toxicities. Arab. J. Chem. 12, 908–931 (2019). https://doi.org/10.1016/J.ARABJC.2017.05.011

    Article  CAS  Google Scholar 

  9. R.R. Miranda, I. Sampaio, V. Zucolotto, Exploring silver nanoparticles for cancer therapy and diagnosis. Colloids Surfaces B Biointerfaces. 210, 112254 (2022). https://doi.org/10.1016/J.COLSURFB.2021.112254

    Article  CAS  Google Scholar 

  10. Z. Cheng, X. Yan, X. Sun, B. Shen, S.S. Gambhir, Tumor molecular imaging with nanoparticles. Engineering. 2, 132–140 (2016). https://doi.org/10.1016/J.ENG.2016.01.027

    Article  CAS  Google Scholar 

  11. M. Hegde, N. Naliyadhara, J. Unnikrishnan, M.S. Alqahtani, M. Abbas, S. Girisa, G. Sethi, A.B. Kunnumakkara, Nanoparticles in the diagnosis and treatment of cancer metastases: current and future perspectives. Cancer Lett. 556, 216066 (2023). https://doi.org/10.1016/J.CANLET.2023.216066

    Article  CAS  Google Scholar 

  12. N.H. Nam, N.H. Luong, Nanoparticles: synthesis and applications. Mater. Biomed. Eng. Inorg. Micro- Nanostructures., 211–240 (2019). https://doi.org/10.1016/B978-0-08-102814-8.00008-1

  13. Y. Zhu, Y. Liu, K. Khan, G. Arkin, A.K. Tareen, Z. **e, T. He, L. Su, F. Guo, X.S. Lai, J. Xu, J. Zhang, Ultrasound combined with nanomaterials for cancer therapy. Mater. Today Adv. 17, 100330 (2023). https://doi.org/10.1016/J.MTADV.2022.100330

    Article  CAS  Google Scholar 

  14. E.R. Evans, P. Bugga, V. Asthana, R. Drezek, Metallic nanoparticles for cancer immunotherapy. Mater. Today. 21, 673–685 (2018). https://doi.org/10.1016/J.MATTOD.2017.11.022

    Article  CAS  Google Scholar 

  15. R. Sharma, U. Agrawal, N. Mody, S. Dubey, S.P. Vyas, Engineered nanoparticles as a precise delivery system in cancer therapeutics. Eng. Nanobiomaterials Appl. Nanobiomaterials., 397–427 (2016). https://doi.org/10.1016/B978-0-323-41532-3.00013-0

  16. R. Krishna, L.D. Mayer, Multidrug resistance (MDR) in cancer: mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur. J. Pharm. Sci. 11, 265–283 (2000). https://doi.org/10.1016/S0928-0987(00)00114-7

    Article  CAS  Google Scholar 

  17. I. Brigger, C. Dubernet, P. Couvreur, Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 64, 24–36 (2012). https://doi.org/10.1016/J.ADDR.2012.09.006

    Article  Google Scholar 

  18. L.R. Singha, N. Ahmed, M.K. Das, Theranostic nanoparticles engineered for clinic and pharmaceutics, Multifunct. Theranostic Nanomedicines. Cancer., 345–365 (2021). https://doi.org/10.1016/B978-0-12-821712-2.00010-4

  19. S. Indoria, V. Singh, M.F. Hsieh, Recent advances in theranostic polymeric nanoparticles for cancer treatment: a review. Int. J. Pharm. 582, 119314 (2020). https://doi.org/10.1016/J.IJPHARM.2020.119314

    Article  CAS  Google Scholar 

  20. C. Zavaleta, D. Ho, E.J. Chung, Theranostic nanoparticles for tracking and monitoring disease state. SLAS Technol. 23, 281–293 (2018). https://doi.org/10.1177/2472630317738699

    Article  CAS  Google Scholar 

  21. C. Enrico, Nanotheranostics and theranostic nanomedicine for diseases and cancer treatment. Des. Nanostructures Theranostics Appl., 41–68 (2018). https://doi.org/10.1016/B978-0-12-813669-0.00002-6

  22. S. Sim, N.K. Wong, Nanotechnology and its use in imaging and drug delivery (Review). Biomed. Reports. 14, 1–9 (2021). https://doi.org/10.3892/BR.2021.1418/HTML

    Article  Google Scholar 

  23. Z. Cheng, M. Li, R. Dey, Y. Chen, Nanomaterials for cancer therapy: current progress and perspectives. J. Hematol. Oncol 14(2021), 1–27 (2021). https://doi.org/10.1186/S13045-021-01096-0

    Article  Google Scholar 

  24. C.M. Hartshorn, M.S. Bradbury, G.M. Lanza, A.E. Nel, J. Rao, A.Z. Wang, U.B. Wiesner, L. Yang, P. Grodzinski, Nanotechnology strategies to advance outcomes in clinical cancer care. ACS Nano. 12, 24–43 (2018). https://doi.org/10.1021/ACSNANO.7B05108/ASSET/IMAGES/MEDIUM/NN-2017-051084_0009.GIF

    Article  CAS  Google Scholar 

  25. Clinical study on the harvesting lymph nodes with carbon nanoparticles for advanced gastric cancer - full text view - ClinicalTrials.gov, (n.d.). https://clinicaltrials.gov/ct2/show/NCT02123407?term=phase+3++nanoparticle&cond=cancer&draw=2&rank=5 (accessed June 10, 2023)

  26. Carbon nanoparticles vs indocyanine green - full text view - ClinicalTrials.gov, (n.d.). https://clinicaltrials.gov/ct2/show/NCT04759820?term=phase+3+carbon+nanoparticle&cond=cancer&draw=2&rank=3 (accessed June 10, 2023)

  27. Pre-operative nodal staging of thyroid cancer using USPIO MRI: preliminary study - full text view - ClinicalTrials.gov, (n.d.). https://clinicaltrials.gov/ct2/show/study/NCT01927887?term=iron+oxide+nanoparticle&cond=Cancer&draw=2&rank=8 (accessed June 9, 2023).

  28. R. Zhang, F. Kiessling, T. Lammers, R.M. Pallares, Clinical translation of gold nanoparticles, Drug Deliv. Transl. Res. 13, 378–385 (2023). https://doi.org/10.1007/S13346-022-01232-4/FIGURES/2

    Article  CAS  Google Scholar 

  29. P. Singh, S. Pandit, V.R.S.S. Mokkapati, A. Garg, V. Ravikumar, I. Mijakovic, Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci. 19 (2018). https://doi.org/10.3390/IJMS19071979

  30. F. Peng, M. Liao, R. Qin, S. Zhu, C. Peng, L. Fu, Y. Chen, B. Han, Regulated cell death (RCD) in cancer: key pathways and targeted therapies, Signal Transduct. Target. Ther 7(2022), 1–66 (2022). https://doi.org/10.1038/s41392-022-01110-y

    Article  CAS  Google Scholar 

  31. D. De Stefano, R. Carnuccio, M.C. Maiuri, Nanomaterials toxicity and cell death modalities. J. Drug Deliv. 2012, 1–14 (2012). https://doi.org/10.1155/2012/167896

    Article  Google Scholar 

  32. D.D. Ma, W.X. Yang, Engineered nanoparticles induce cell apoptosis: potential for cancer therapy. Oncotarget. 7, 40882 (2016). https://doi.org/10.18632/ONCOTARGET.8553

    Article  Google Scholar 

  33. J. Bao, Z. Jiang, W. Ding, Y. Cao, L. Yang, J. Liu, Silver nanoparticles induce mitochondria-dependent apoptosis and late non-canonical autophagy in HT-29 colon cancer cells. Nanotechnol. Rev. 11, 1911–1926 (2022). https://doi.org/10.1515/NTREV-2022-0114/ASSET/GRAPHIC/J_NTREV-2022-0114_FIG_007.JPG

    Article  CAS  Google Scholar 

  34. A.K. Wani, N. Akhtar, T.u.G. Mir, R. Singh, P.K. Jha, S.K. Mallik, S. Sinha, S.K. Tripathi, A. Jain, A. Jha, H.P. Devkota, A. Prakash, Targeting apoptotic pathway of cancer cells with phytochemicals and plant-based nanomaterials. Biomolecules. 13 (2023). https://doi.org/10.3390/BIOM13020194

  35. C.M. Pfeffer, A.T.K. Singh, Apoptosis: a target for anticancer therapy. Int. J. Mol. Sci. 19 (2018). https://doi.org/10.3390/IJMS19020448

  36. Y. Yang, X. Du, Q. Wang, J. Liu, E. Zhang, L. Sai, C. Peng, M.F. Lavin, A.J. Yeo, X. Yang, H. Shao, Z. Du, Mechanism of cell death induced by silica nanoparticles in hepatocyte cells is by apoptosis. Int. J. Mol. Med. 44, 903–912 (2019). https://doi.org/10.3892/IJMM.2019.4265/HTML

    Article  CAS  Google Scholar 

  37. S.W. Wang, C.H. Lee, M.S. Lin, C.W. Chi, Y.J. Chen, G.S. Wang, K.W. Liao, L.P. Chiu, S.H. Wu, D.M. Huang, L. Chen, Y.S. Shen, ZnO nanoparticles induced caspase-dependent apoptosis in gingival squamous cell carcinoma through mitochondrial dysfunction and p70S6K signaling pathway. Int. J. Mol. Sci. 21, 1612 (2020). https://doi.org/10.3390/IJMS21051612

    Article  Google Scholar 

  38. C. Wei, Q. Fu, Cell death mediated by nanotechnology via the cuproptosis pathway: a novel horizon for cancer therapy. View. 20230001 (2023). https://doi.org/10.1002/VIW.20230001

  39. J. **e, Y. Yang, Y. Gao, J. He, Cuproptosis: mechanisms and links with cancers, Mol. Cancer 2023 221. 22 1–30 (2023). https://doi.org/10.1186/S12943-023-01732-Y

  40. D. Wu, S. Wang, G. Yu, X. Chen, Cell death mediated by the pyroptosis pathway with the aid of nanotechnology: prospects for cancer therapy. Angew. Chem. Int. Ed. Engl. 60, 8018–8034 (2021). https://doi.org/10.1002/ANIE.202010281

    Article  CAS  Google Scholar 

  41. Q. Zeng, X. Ma, Y. Song, Q. Chen, Q. Jiao, L. Zhou, Targeting regulated cell death in tumor nanomedicines. Theranostics. 12, 817 (2022). https://doi.org/10.7150/THNO.67932

    Article  CAS  Google Scholar 

  42. Q. Kong, Z. Zhang, Cancer-associated pyroptosis: a new license to kill tumor. Front. Immunol. 14, 1082165 (2023). https://doi.org/10.3389/FIMMU.2023.1082165/BIBTEX

    Article  CAS  Google Scholar 

  43. Y. Wang, T. Liu, X. Li, H. Sheng, X. Ma, L. Hao, Ferroptosis-inducing nanomedicine for cancer therapy. Front. Pharmacol. 12 (2021). https://doi.org/10.3389/FPHAR.2021.735965

  44. L. Luo, H. Wang, W. Tian, X. Li, Z. Zhu, R. Huang, H. Luo, Targeting ferroptosis-based cancer therapy using nanomaterials: strategies and applications. Theranostics. 11, 9937 (2021). https://doi.org/10.7150/THNO.65480

    Article  CAS  Google Scholar 

  45. C. Bae, H. Kim, Y.M. Kook, C. Lee, C. Kim, C. Yang, M.H. Park, Y. Piao, W.G. Koh, K. Lee, Induction of ferroptosis using functionalized iron-based nanoparticles for anti-cancer therapy. Mater. Today Bio. 17, 100457 (2022). https://doi.org/10.1016/J.MTBIO.2022.100457

    Article  CAS  Google Scholar 

  46. Q. Liu, Y. Zhao, H. Zhou, C. Chen, Ferroptosis: challenges and opportunities for nanomaterials in cancer therapy. Regen. Biomater. 10 (2023). https://doi.org/10.1093/RB/RBAD004

  47. M. Rahman, K. Alam, A. Hafeez, R. Ilyas, S. Beg, Metallic nanoparticles in drug delivery and cancer treatment, Nanoformulation Strateg. Cancer Treat., 107–119 (2021). https://doi.org/10.1016/B978-0-12-821095-6.00008-2

  48. S. Zafar, D. Jain, F.J. Ahmad, Metallic nanoparticles in drug delivery: concepts, challenges, and current advancement, Multifunct. Nanocarriers., 121–148 (2022). https://doi.org/10.1016/B978-0-323-85041-4.00007-X

  49. T.T. Dongsar, T.S. Dongsar, M.A.S. Abourehab, N. Gupta, P. Kesharwani, Emerging application of magnetic nanoparticles for breast cancer therapy. Eur. Polym. J. 187, 111898 (2023). https://doi.org/10.1016/J.EURPOLYMJ.2023.111898

    Article  CAS  Google Scholar 

  50. R. Baghban, M. Afarid, J. Soleymani, M. Rahimi, Were magnetic materials useful in cancer therapy? Biomed. Pharmacother. 144, 112321 (2021). https://doi.org/10.1016/J.BIOPHA.2021.112321

    Article  CAS  Google Scholar 

  51. S. Kulkarni, S. Kumar, S. Acharya, S. Kulkarni, S. Kumar, S. Acharya, Gold nanoparticles in cancer therapeutics and diagnostics. Cureus. 14 (2022). https://doi.org/10.7759/CUREUS.30096

  52. S. Thambiraj, S. Shruthi, R. Vijayalakshmi, D. Ravi Shankaran, Evaluation of cytotoxic activity of docetaxel loaded gold nanoparticles for lung cancer drug delivery, Cancer Treat. Res. Commun. 21, 100157 (2019). https://doi.org/10.1016/J.CTARC.2019.100157

    Article  CAS  Google Scholar 

  53. C. Hepokur, İ.A. Kariper, S. Mısır, E. Ay, S. Tunoğlu, M.S. Ersez, Ü. Zeybek, S.E. Kuruca, İ. Yaylım, Silver nanoparticle/capecitabine for breast cancer cell treatment. Toxicol. Vitr. 61, 104600 (2019). https://doi.org/10.1016/J.TIV.2019.104600

    Article  CAS  Google Scholar 

  54. J. Nayak, K.S. Prajapati, S. Kumar, V.K. Vashistha, S.K. Sahoo, R. Kumar, Thiolated β-cyclodextrin modified iron oxide nanoparticles for effective targeted cancer therapy. Mater. Today Commun. 33, 104644 (2022). https://doi.org/10.1016/J.MTCOMM.2022.104644

    Article  CAS  Google Scholar 

  55. V.J. Sawant, S.R. Bamane, PEG-beta-cyclodextrin functionalized zinc oxide nanoparticles show cell imaging with high drug payload and sustained pH responsive delivery of curcumin in to MCF-7 cells. J. Drug Deliv. Sci. Technol. 43, 397–408 (2018). https://doi.org/10.1016/J.JDDST.2017.11.010

    Article  CAS  Google Scholar 

  56. J. Du, J. Sun, X. Liu, Q. Wu, W. Shen, Y. Gao, Y. Liu, C. Wu, Preparation of C6 cell membrane-coated doxorubicin conjugated manganese dioxide nanoparticles and its targeted therapy application in glioma. Eur. J. Pharm. Sci. 180, 106338 (2023). https://doi.org/10.1016/J.EJPS.2022.106338

    Article  CAS  Google Scholar 

  57. J. Song, L. Lin, Z. Yang, R. Zhu, Z. Zhou, Z.W. Li, F. Wang, J. Chen, H. Yang, X. Chen, Self-assembled responsive bilayered vesicles with adjustable oxidative stress for enhanced cancer imaging and therapy. J. Am. Chem. Soc. 141, 8158–8170 (2019). https://doi.org/10.1021/JACS.8B13902

    Article  CAS  Google Scholar 

  58. H.S. Ali, B.M. El-Haj, S. Saifullah, M. Kawish, Gold nanoparticles in cancer diagnosis and therapy. Met. Nanoparticles Drug Deliv. Diagnostic Appl., 43–58 (2020). https://doi.org/10.1016/B978-0-12-816960-5.00004-5

  59. J.B. Vines, J.H. Yoon, N.E. Ryu, D.J. Lim, H. Park, Gold nanoparticles for photothermal cancer therapy. Front. Chem. 7, 432792 (2019). https://doi.org/10.3389/FCHEM.2019.00167/BIBTEX

    Article  Google Scholar 

  60. S. Medici, M. Peana, D. Coradduzza, M.A. Zoroddu, Gold nanoparticles and cancer: detection, diagnosis and therapy. Semin. Cancer Biol. 76, 27–37 (2021). https://doi.org/10.1016/J.SEMCANCER.2021.06.017

    Article  CAS  Google Scholar 

  61. Z. Yang, D. Wang, C. Zhang, H. Liu, M. Hao, S. Kan, D. Liu, W. Liu, The applications of gold nanoparticles in the diagnosis and treatment of gastrointestinal cancer. Front. Oncol. 11, 819329 (2022). https://doi.org/10.3389/FONC.2021.819329/BIBTEX

    Article  Google Scholar 

  62. E. Alchera, M. Monieri, M. Maturi, I. Locatelli, E. Locatelli, S. Tortorella, A. Sacchi, A. Corti, M. Nebuloni, R. Lucianò, F. Pederzoli, F. Montorsi, A. Salonia, S. Meyer, J. Jose, P. Giustetto, M.C. Franchini, F. Curnis, M. Alfano, Early diagnosis of bladder cancer by photoacoustic imaging of tumor-targeted gold nanorods. Photoacoustics. 28, 100400 (2022). https://doi.org/10.1016/J.PACS.2022.100400

    Article  Google Scholar 

  63. W. Gao, W. Wang, S. Yao, S. Wu, H. Zhang, J. Zhang, F. **g, H. Mao, Q. **, H. Cong, C. Jia, G. Zhang, J. Zhao, Highly sensitive detection of multiple tumor markers for lung cancer using gold nanoparticle probes and microarrays. Anal. Chim. Acta. 958, 77–84 (2017). https://doi.org/10.1016/J.ACA.2016.12.016

    Article  CAS  Google Scholar 

  64. H. Banu, D.K. Sethi, A. Edgar, A. Sheriff, N. Rayees, N. Renuka, S.M. Faheem, K. Premkumar, G. Vasanthakumar, Doxorubicin loaded polymeric gold nanoparticles targeted to human folate receptor upon laser photothermal therapy potentiates chemotherapy in breast cancer cell lines. J. Photochem. Photobiol. B Biol. 149, 116–128 (2015). https://doi.org/10.1016/J.JPHOTOBIOL.2015.05.008

    Article  CAS  Google Scholar 

  65. M. Amirishoar, S. Noori, J. Mohammadnejad, M.R. Bazl, A. Narmani, Design and fabrication of folic acid-conjugated and gold-loaded poly (lactic-co-glycolic acid) biopolymers for suppression of breast cancer cell survival combining photothermal and photodynamic therapy. J. Drug Deliv. Sci. Technol. 83, 104266 (2023). https://doi.org/10.1016/J.JDDST.2023.104266

    Article  CAS  Google Scholar 

  66. G.M. Vlăsceanu, Ş. Marin, R.E. Ţiplea, I.R. Bucur, M. Lemnaru, M.M. Marin, A.M. Grumezescu, E. Andronescu, Silver nanoparticles in cancer therapy, Nanobiomaterials Cancer Ther. Appl. Nanobiomaterials., 29–56 (2016). https://doi.org/10.1016/B978-0-323-42863-7.00002-5

  67. P. Takáč, R. Michalková, M. Čižmáriková, Z. Bedlovičová, Ľ. Balážová, G. Takáčová, The role of silver nanoparticles in the diagnosis and treatment of cancer: are there any perspectives for the future? Life 13, 466 (2023). https://doi.org/10.3390/LIFE13020466

    Article  Google Scholar 

  68. S. Gurunathan, M. Qasim, C. Park, H. Yoo, J.H. Kim, K. Hong, Cytotoxic potential and molecular pathway analysis of silver nanoparticles in human colon cancer cells HCT116. Int. J. Mol. Sci 19, 2269 (2018). https://doi.org/10.3390/IJMS19082269

    Article  Google Scholar 

  69. M.E. Abdel-Hameed, N.S. Farrag, H. Aglan, A.M. Amin, M.A. Mahdy, A new modality in targeted delivery of epirubicin for tumor theranosis based on PEGylated silver nanoparticles: design, radiolabeling and bioevaluation. Int. J. Pharm. 629, 122358 (2022). https://doi.org/10.1016/J.IJPHARM.2022.122358

    Article  CAS  Google Scholar 

  70. M. Jeyaraj, G. Sathishkumar, G. Sivanandhan, D. MubarakAli, M. Rajesh, R. Arun, G. Kapildev, M. Manickavasagam, N. Thajuddin, K. Premkumar, A. Ganapathi, Biogenic silver nanoparticles for cancer treatment: an experimental report. Colloids Surfaces B Biointerfaces. 106, 86–92 (2013). https://doi.org/10.1016/J.COLSURFB.2013.01.027

    Article  CAS  Google Scholar 

  71. S.M. Fayadh, A.H. Mohammed, Silver nanoparticles induced apoptosis in papillary and follicular thyroid carcinoma cells. Phys. Med. 14, 100056 (2022). https://doi.org/10.1016/J.PHMED.2022.100056

    Article  Google Scholar 

  72. D.S. Parimi, Y. Gupta, S. Marpu, C.S. Bhatt, T.K. Bollu, A.K. Suresh, Nanomagnet-facilitated pharmaco-compatibility for cancer diagnostics: underlying risks and the emergence of ultrasmall nanomagnets. J. Pharm. Anal. 12, 365–379 (2022). https://doi.org/10.1016/J.JPHA.2021.11.002

    Article  Google Scholar 

  73. Z. Bakhtiary, A.A. Saei, M.J. Hajipour, M. Raoufi, O. Vermesh, M. Mahmoudi, Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: possibilities and challenges, Nanomedicine Nanotechnology. Biol. Med. 12, 287–307 (2016). https://doi.org/10.1016/J.NANO.2015.10.019

    Article  CAS  Google Scholar 

  74. I. Antal, M. Koneracka, M. Kubovcikova, V. Zavisova, I. Khmara, D. Lucanska, L. Jelenska, I. Vidlickova, M. Zatovicova, S. Pastorekova, N. Bugarova, M. Micusik, M. Omastova, P. Kopcansky, d,l-lysine functionalized Fe3O4 nanoparticles for detection of cancer cells. Colloids Surfaces B Biointerfaces. 163, 236–245 (2018). https://doi.org/10.1016/J.COLSURFB.2017.12.022

    Article  CAS  Google Scholar 

  75. D. Zhi, T. Yang, J. Yang, S. Fu, S. Zhang, Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomater. 102, 13–34 (2020). https://doi.org/10.1016/J.ACTBIO.2019.11.027

    Article  CAS  Google Scholar 

  76. Q. Mu, G. Lin, M. Jeon, H. Wang, F.C. Chang, R.A. Revia, J. Yu, M. Zhang, Iron oxide nanoparticle targeted chemo-immunotherapy for triple negative breast cancer. Mater. Today. 50, 149–169 (2021). https://doi.org/10.1016/J.MATTOD.2021.08.002

    Article  CAS  Google Scholar 

  77. J.C.L. Chow, Magnetic nanoparticles as contrast agents in magnetic resonance imaging and radiosensitizers in radiotherapy. Fundam. Ind. Appl. Magn. Nanoparticles., 291–316 (2022). https://doi.org/10.1016/B978-0-12-822819-7.00002-8

  78. S. Anjum, M. Hashim, S.A. Malik, M. Khan, J.M. Lorenzo, B.H. Abbasi, C. Hano, Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers (Basel). 13, 4570 (2021). https://doi.org/10.3390/CANCERS13184570

    Article  CAS  Google Scholar 

  79. S. Ibraheem, A.A. Kadhim, K.A. Kadhim, I.A. Kadhim, M. Jabir, Zinc oxide nanoparticles as diagnostic tool for cancer cells. Int. J. Biomater. 2022 (2022). https://doi.org/10.1155/2022/2807644

  80. T.A. Singh, J. Das, P.C. Sil, Zinc oxide nanoparticles: a comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks. Adv. Colloid Interface Sci. 286, 102317 (2020). https://doi.org/10.1016/J.CIS.2020.102317

    Article  CAS  Google Scholar 

  81. Q. Tang, H. **a, W. Liang, X. Huo, X. Wei, Synthesis and characterization of zinc oxide nanoparticles from Morus nigra and its anticancer activity of AGS gastric cancer cells. J. Photochem. Photobiol. B Biol. 202, 111698 (2020). https://doi.org/10.1016/J.JPHOTOBIOL.2019.111698

    Article  CAS  Google Scholar 

  82. R. Tanino, Y. Amano, X. Tong, R. Sun, Y. Tsubata, M. Harada, Y. Fujita, T. Isobe, Anticancer activity of ZnO nanoparticles against human small-cell lung cancer in an orthotopic mouse model. Mol. Cancer Ther. 19, 502–512 (2020). https://doi.org/10.1158/1535-7163.MCT-19-0018

    Article  CAS  Google Scholar 

  83. J. Bonet-Aleta, J. Calzada-Funes, J.L. Hueso, Manganese oxide nano-platforms in cancer therapy: recent advances on the development of synergistic strategies targeting the tumor microenvironment. Appl. Mater. Today. 29, 101628 (2022). https://doi.org/10.1016/J.APMT.2022.101628

    Article  Google Scholar 

  84. K.H. Bae, K. Lee, C. Kim, T.G. Park, Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging. Biomaterials. 32, 176–184 (2011). https://doi.org/10.1016/J.BIOMATERIALS.2010.09.039

    Article  CAS  Google Scholar 

  85. C. Li, Y. Zhang, M. Li, H. Zhang, Z. Zhu, Y. Xue, Fumaria officinalis-assisted synthesis of manganese nanoparticles as an anti-human gastric cancer agent. Arab. J. Chem. 14, 103309 (2021). https://doi.org/10.1016/J.ARABJC.2021.103309

    Article  CAS  Google Scholar 

  86. M. Manikandan, N. Hasan, H.F. Wu, Platinum nanoparticles for the photothermal treatment of Neuro 2A cancer cells. Biomaterials. 34, 5833–5842 (2013). https://doi.org/10.1016/J.BIOMATERIALS.2013.03.077

    Article  CAS  Google Scholar 

  87. S. Mukherjee, R. Kotcherlakota, S. Haque, D. Bhattacharya, J.M. Kumar, S. Chakravarty, C.R. Patra, Improved delivery of doxorubicin using rationally designed PEGylated platinum nanoparticles for the treatment of melanoma. Mater. Sci. Eng. C. 108, 110375 (2020). https://doi.org/10.1016/J.MSEC.2019.110375

    Article  CAS  Google Scholar 

  88. G. Rajagopal, A. Nivetha, M. Sundar, T. Panneerselvam, S. Murugesan, P. Parasuraman, S. Kumar, S. Ilango, S. Kunjiappan, Mixed phytochemicals mediated synthesis of copper nanoparticles for anticancer and larvicidal applications. Heliyon. 7, e07360 (2021). https://doi.org/10.1016/J.HELIYON.2021.E07360

    Article  CAS  Google Scholar 

  89. X. Kang, J. Wang, C.H. Huang, F.S. Wibowo, R. Amin, P. Chen, F. Li, Diethyldithiocarbamate copper nanoparticle overcomes resistance in cancer therapy without inhibiting P-glycoprotein, Nanomedicine Nanotechnology. Biol. Med. 47, 102620 (2023). https://doi.org/10.1016/J.NANO.2022.102620

    Article  CAS  Google Scholar 

  90. J. Deng, S. Xu, W. Hu, X. Xun, L. Zheng, M. Su, Tumor targeted, stealthy and degradable bismuth nanoparticles for enhanced X-ray radiation therapy of breast cancer. Biomaterials. 154, 24–33 (2018). https://doi.org/10.1016/J.BIOMATERIALS.2017.10.048

    Article  CAS  Google Scholar 

  91. K. Brindhadevi, H.A.L. Garalleh, A. Alalawi, E. Al-Sarayreh, A. Pugazhendhi, Carbon nanomaterials: types, synthesis strategies and their application as drug delivery system for cancer therapy. Biochem. Eng. J. 192, 108828 (2023). https://doi.org/10.1016/J.BEJ.2023.108828

    Article  CAS  Google Scholar 

  92. J.R. Siqueira, O.N. Oliveira, Carbon-based nanomaterials, Nanostructures. (2017) 233–249. https://doi.org/10.1016/B978-0-323-49782-4.00009-7.

  93. N.J. Singhai, R. Maheshwari, N.K. Jain, S. Ramteke, Chondroitin sulphate and α-tocopheryl succinate tethered multiwalled carbon nanotubes for dual-action therapy of triple-negative breast cancer. J. Drug Deliv. Sci. Technol. 60, 102080 (2020). https://doi.org/10.1016/J.JDDST.2020.102080

    Article  CAS  Google Scholar 

  94. Z. Ji, G. Lin, Q. Lu, L. Meng, X. Shen, L. Dong, C. Fu, X. Zhang, Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system. J. Colloid Interface Sci. 365, 143–149 (2012). https://doi.org/10.1016/J.JCIS.2011.09.013

    Article  CAS  Google Scholar 

  95. N. Ghanbari, Z. Salehi, A.A. Khodadadi, M.A. Shokrgozar, A.A. Saboury, F. Farzaneh, Tryptophan-functionalized graphene quantum dots with enhanced curcumin loading capacity and pH-sensitive release. J. Drug Deliv. Sci. Technol. 61, 102137 (2021). https://doi.org/10.1016/J.JDDST.2020.102137

    Article  CAS  Google Scholar 

  96. H. Yao, S. Zhang, X. Guo, Y. Li, J. Ren, H. Zhou, B. Du, J. Zhou, A traceable nanoplatform for enhanced chemo-photodynamic therapy by reducing oxygen consumption, Nanomedicine Nanotechnology. Biol. Med. 20, 101978 (2019). https://doi.org/10.1016/J.NANO.2019.03.001

    Article  CAS  Google Scholar 

  97. K. Vinothini, N.K. Rajendran, A. Ramu, N. Elumalai, M. Rajan, Folate receptor targeted delivery of paclitaxel to breast cancer cells via folic acid conjugated graphene oxide grafted methyl acrylate nanocarrier. Biomed. Pharmacother. 110, 906–917 (2019). https://doi.org/10.1016/J.BIOPHA.2018.12.008

    Article  CAS  Google Scholar 

  98. J. Shi, H. Zhang, L. Wang, L. Li, H. Wang, Z. Wang, Z. Li, C. Chen, L. Hou, C. Zhang, Z. Zhang, PEI-derivatized fullerene drug delivery using folate as a homing device targeting to tumor. Biomaterials. 34, 251–261 (2013). https://doi.org/10.1016/J.BIOMATERIALS.2012.09.039

    Article  CAS  Google Scholar 

  99. R. Singh, R. Deshmukh, Carbon nanotube as an emerging theranostic tool for oncology. J. Drug Deliv. Sci. Technol. 74, 103586 (2022). https://doi.org/10.1016/J.JDDST.2022.103586

    Article  CAS  Google Scholar 

  100. N. Yadav, M. Tyagi, S. Wadhwa, A. Mathur, J. Narang, Few biomedical applications of carbon nanotubes. Methods Enzymol. 630, 347–363 (2020). https://doi.org/10.1016/BS.MIE.2019.11.005

    Article  CAS  Google Scholar 

  101. S.r. Ji, C. Liu, B. Zhang, F. Yang, J. Xu, J. Long, C. **, D.l. Fu, Q.x. Ni, X.j. Yu, Carbon nanotubes in cancer diagnosis and therapy. Biochim. Biophys. Acta - Rev. Cancer. 1806, 29–35 (2010). https://doi.org/10.1016/J.BBCAN.2010.02.004

    Article  CAS  Google Scholar 

  102. A. Yaghoubi, A. Ramazani, Anticancer DOX delivery system based on CNTs: functionalization, targeting and novel technologies. J. Control. Release. 327, 198–224 (2020). https://doi.org/10.1016/J.JCONREL.2020.08.001

    Article  CAS  Google Scholar 

  103. J. Ma, G. Wang, X. Ding, F. Wang, C. Zhu, Y. Rong, Carbon-based nanomaterials as drug delivery agents for colorectal cancer: clinical preface to colorectal cancer citing their markers and existing theranostic approaches. ACS Omega. (2023). https://doi.org/10.1021/ACSOMEGA.2C06242/ASSET/IMAGES/LARGE/AO2C06242_0002.JPEG

  104. P. Gulati, P. Kaur, M.V. Rajam, T. Srivastava, P. Mishra, S.S. Islam, Single-wall carbon nanotube based electrochemical immunoassay for leukemia detection. Anal. Biochem. 557, 111–119 (2018). https://doi.org/10.1016/J.AB.2018.07.020

    Article  CAS  Google Scholar 

  105. J.M. González-Domínguez, L. Grasa, J. Frontiñán-Rubio, E. Abás, A. Domínguez-Alfaro, J.E. Mesonero, A. Criado, A. Ansón-Casaos, Intrinsic and selective activity of functionalized carbon nanotube/nanocellulose platforms against colon cancer cells. Colloids Surfaces B Biointerfaces. 212, 112363 (2022). https://doi.org/10.1016/J.COLSURFB.2022.112363

    Article  Google Scholar 

  106. H.J. Yao, L. Sun, Y. Liu, S. Jiang, Y. Pu, J. Li, Y. Zhang, Monodistearoylphosphatidylethanolamine-hyaluronic acid functionalization of single-walled carbon nanotubes for targeting intracellular drug delivery to overcome multidrug resistance of cancer cells. Carbon N. Y. 96, 362–376 (2016). https://doi.org/10.1016/J.CARBON.2015.09.037

    Article  CAS  Google Scholar 

  107. W. **, R. Zhang, C. Dong, T. Jiang, Y. Tian, Q. Yang, W. Yi, J. Hou, A simple MWCNTs@paper biosensor for CA19-9 detection and its long-term preservation by vacuum freeze drying. Int. J. Biol. Macromol. 144, 995–1003 (2020). https://doi.org/10.1016/J.IJBIOMAC.2019.09.176

    Article  CAS  Google Scholar 

  108. M.R.M. Radzi, N.A. Johari, W.F.A.W.M. Zawawi, N.A. Zawawi, N.A. Latiff, N.A.N.N. Malek, A.A. Wahab, M.I. Salim, K. Jemon, In vivo evaluation of oxidized multiwalled-carbon nanotubes-mediated hyperthermia treatment for breast cancer, Biomater. Adv. 134, 112586 (2022). https://doi.org/10.1016/J.MSEC.2021.112586

    Article  Google Scholar 

  109. N.J. Singhai, R. Maheshwari, S. Ramteke, CD44 receptor targeted ‘smart’ multi-walled carbon nanotubes for synergistic therapy of triple-negative breast cancer. Colloid Interface Sci. Commun. 35, 100235 (2020). https://doi.org/10.1016/J.COLCOM.2020.100235

    Article  CAS  Google Scholar 

  110. A. Lohani, S. Durgapal, P. Morganti, Quantum dots: an emerging implication of nanotechnology in cancer diagnosis and therapy. Quantum Mater. Devices, Appl., 243–262 (2023). https://doi.org/10.1016/B978-0-12-820566-2.00008-9

  111. J.O. Fernandes, C.A.R. Bernardino, B.F. Braz, C.F. Mahler, R.E. Santelli, F.H. Cincotto, (Bio)sensing materials: quantum dots, Encycl. Sensors Biosens., 389–400 (2023). https://doi.org/10.1016/B978-0-12-822548-6.00017-0

  112. L.A. Bentolila, Photoluminescent quantum dots in imaging, diagnostics and therapy. Appl. Nanosci. Photomed., 77–104 (2015). https://doi.org/10.1533/9781908818782.77

  113. D. Onoshima, H. Yukawa, Y. Baba, Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine. Adv. Drug Deliv. Rev. 95, 2–14 (2015). https://doi.org/10.1016/J.ADDR.2015.08.004

    Article  CAS  Google Scholar 

  114. F. Yazdian, Aptamer-functionalized quantum dots for targeted cancer therapy. Aptamers Eng. Nanocarriers Cancer Ther., 295–315 (2023). https://doi.org/10.1016/B978-0-323-85881-6.00012-9

  115. H.R.A.K. Al-Hetty, A.T. Jalil, J.H.Z. Al-Tamimi, H.G. Shakier, M. Kandeel, M.M. Saleh, M. Naderifar, Engineering and surface modification of carbon quantum dots for cancer bioimaging. Inorg. Chem. Commun. 149, 110433 (2023). https://doi.org/10.1016/J.INOCHE.2023.110433

    Article  CAS  Google Scholar 

  116. D. Radenkovic, H. Kobayashi, E. Remsey-Semmelweis, A.M. Seifalian, Quantum dot nanoparticle for optimization of breast cancer diagnostics and therapy in a clinical setting, Nanomedicine Nanotechnology. Biol. Med. 12, 1581–1592 (2016). https://doi.org/10.1016/J.NANO.2016.02.014

    Article  CAS  Google Scholar 

  117. G. Bharathi, F. Lin, L. Liu, T.Y. Ohulchanskyy, R. Hu, J. Qu, An all-graphene quantum dot Förster resonance energy transfer (FRET) probe for ratiometric detection of HE4 ovarian cancer biomarker. Colloids Surfaces B Biointerfaces. 198, 111458 (2021). https://doi.org/10.1016/J.COLSURFB.2020.111458

    Article  CAS  Google Scholar 

  118. N. Dhas, M. Pastagia, A. Sharma, A. Khera, R. Kudarha, S. Kulkarni, S. Soman, S. Mutalik, R.P. Barnwal, G. Singh, M. Patel, Organic quantum dots: an ultrasmall nanoplatform for cancer theranostics. J. Control. Release. 348, 798–824 (2022). https://doi.org/10.1016/J.JCONREL.2022.06.033

    Article  CAS  Google Scholar 

  119. A. Karagianni, N.G. Tsierkezos, M. Prato, M. Terrones, K.V. Kordatos, Application of carbon-based quantum dots in photodynamic therapy. Carbon N. Y. 203, 273–310 (2023). https://doi.org/10.1016/J.CARBON.2022.11.026

    Article  CAS  Google Scholar 

  120. E. Nosheen, A. Shah, F.J. Iftikhar, S. Aftab, N.K. Bakirhan, S.A. Ozkan, Optical nanosensors for pharmaceutical detection, New Dev. Nanosensors Pharm. Anal., 119–140 (2019). https://doi.org/10.1016/B978-0-12-816144-9.00004-3

  121. D. Iannazzo, A. Pistone, M. Salamò, S. Galvagno, R. Romeo, S.V. Giofré, C. Branca, G. Visalli, A. Di Pietro, Graphene quantum dots for cancer targeted drug delivery. Int. J. Pharm. 518, 185–192 (2017). https://doi.org/10.1016/J.IJPHARM.2016.12.060

    Article  CAS  Google Scholar 

  122. M. Mahani, M. Pourrahmani-Sarbanani, M. Yoosefian, F. Divsar, S.M. Mousavi, A. Nomani, Doxorubicin delivery to breast cancer cells with transferrin-targeted carbon quantum dots: an in vitro and in silico study. J. Drug Deliv. Sci. Technol. 62, 102342 (2021). https://doi.org/10.1016/J.JDDST.2021.102342

    Article  CAS  Google Scholar 

  123. S. Barua, X. Geng, B. Chen, Graphene-based nanomaterials for healthcare applications, Photonanotechnology Ther. Imaging., 45–81 (2020). https://doi.org/10.1016/B978-0-12-817840-9.00003-5

  124. J. Lin, Y. Huang, P. Huang, Graphene-based nanomaterials in bioimaging. Biomed. Appl. Funct. Nanomater. Concepts, Dev. Clin. Transl., 247–287 (2018). https://doi.org/10.1016/B978-0-323-50878-0.00009-4

  125. F. Alemi, R. Zarezadeh, A.R. Sadigh, H. Hamishehkar, M. Rahimi, M. Majidinia, Z. Asemi, A. Ebrahimi-Kalan, B. Yousefi, N. Rashtchizadeh, Graphene oxide and reduced graphene oxide: efficient cargo platforms for cancer theranostics. J. Drug Deliv. Sci. Technol. 60, 101974 (2020). https://doi.org/10.1016/J.JDDST.2020.101974

    Article  CAS  Google Scholar 

  126. C. Hu, L. Zhang, Z. Yang, Z. Song, Q. Zhang, Y. He, Graphene oxide-based qRT-PCR assay enables the sensitive and specific detection of miRNAs for the screening of ovarian cancer. Anal. Chim. Acta. 1174, 338715 (2021). https://doi.org/10.1016/J.ACA.2021.338715

    Article  CAS  Google Scholar 

  127. M.K. Filippidou, C.M. Loukas, G. Kaprou, E. Tegou, P. Petrou, S. Kakabakos, A. Tserepi, S. Chatzandroulis, Detection of BRCA1 gene on partially reduced graphene oxide biosensors. Microelectron. Eng. 216, 111093 (2019). https://doi.org/10.1016/J.MEE.2019.111093

    Article  CAS  Google Scholar 

  128. N. Ma, J. Liu, W. He, Z. Li, Y. Luan, Y. Song, S. Garg, Folic acid-grafted bovine serum albumin decorated graphene oxide: an efficient drug carrier for targeted cancer therapy. J. Colloid Interface Sci. 490, 598–607 (2017). https://doi.org/10.1016/J.JCIS.2016.11.097

    Article  CAS  Google Scholar 

  129. L. Zhou, L. Zhou, S. Wei, X. Ge, J. Zhou, H. Jiang, F. Li, J. Shen, Combination of chemotherapy and photodynamic therapy using graphene oxide as drug delivery system. J. Photochem. Photobiol. B Biol. 135, 7–16 (2014). https://doi.org/10.1016/J.JPHOTOBIOL.2014.04.010

    Article  CAS  Google Scholar 

  130. X. Wei, P. Li, H. Zhou, X. Hu, D. Liu, J. Wu, Y. Wang, Engineering of gemcitabine coated nano-graphene oxide sheets for efficient near-infrared radiation mediated in vivo lung cancer photothermal therapy. J. Photochem. Photobiol. B Biol. 216, 112125 (2021). https://doi.org/10.1016/J.JPHOTOBIOL.2021.112125

    Article  CAS  Google Scholar 

  131. S. Goodarzi, T. Da Ros, J. Conde, F. Sefat, M. Mozafari, Fullerene: biomedical engineers get to revisit an old friend. Mater. Today. 20, 460–480 (2017). https://doi.org/10.1016/J.MATTOD.2017.03.017

    Article  CAS  Google Scholar 

  132. A. Grebinyk, S. Prylutska, S. Grebinyk, Y. Prylutskyy, U. Ritter, O. Matyshevska, T. Dandekar, M. Frohme, Toward photodynamic cancer chemotherapy with C60-doxorubicin nanocomplexes. Nanomater. Photodyn. Ther., 489–522 (2023). https://doi.org/10.1016/B978-0-323-85595-2.00005-0

  133. A.Y. Rybkin, A.V. Kozlov, A.Y. Belik, A.I. Kotelnikov, Fullerenes and fullerene–dye structures in photodynamic therapy, Nanomater. Photodyn. Ther., 349–399 (2023). https://doi.org/10.1016/B978-0-323-85595-2.00012-8

  134. H.J. Huang, M. Chetyrkina, C.W. Wong, O.A. Kraevaya, A.V. Zhilenkov, I.I. Voronov, P.H. Wang, P.A. Troshin, S.h. Hsu, Identification of potential descriptors of water-soluble fullerene derivatives responsible for antitumor effects on lung cancer cells via QSAR analysis. Comput. Struct. Biotechnol. J. 19, 812–825 (2021). https://doi.org/10.1016/J.CSBJ.2021.01.012

    Article  CAS  Google Scholar 

  135. J.R. Xu, Y. **e, J.W. Li, R. Liu, M. Chen, Y.X. Ren, Q. Luo, J.L. Duan, C.J. Bao, Y.X. Liu, P.S. Li, W.L. Lu, Development of fullerene nanospherical miRNA and application in overcoming resistant breast cancer. Mater. Today Chem. 26, 101019 (2022). https://doi.org/10.1016/J.MTCHEM.2022.101019

    Article  CAS  Google Scholar 

  136. J. Shi, Y. Liu, L. Wang, J. Gao, J. Zhang, X. Yu, R. Ma, R. Liu, Z. Zhang, A tumoral acidic pH-responsive drug delivery system based on a novel photosensitizer (fullerene) for in vitro and in vivo chemo-photodynamic therapy. Acta Biomater 10, 1280–1291 (2014). https://doi.org/10.1016/J.ACTBIO.2013.10.037

    Article  CAS  Google Scholar 

  137. S. Beyaz, A. Aslan, O. Gok, H. Uslu, C.A. Agca, I.H. Ozercan, In vivo, in vitro and in silico anticancer investigation of fullerene C60 on DMBA induced breast cancer in rats. Life Sci. 291, 120281 (2022). https://doi.org/10.1016/J.LFS.2021.120281

    Article  CAS  Google Scholar 

  138. Y. Peng, D. Yang, W. Lu, X. Hu, H. Hong, T. Cai, Positron emission tomography (PET) guided glioblastoma targeting by a fullerene-based nanoplatform with fast renal clearance. Acta Biomater 61, 193–203 (2017). https://doi.org/10.1016/J.ACTBIO.2017.08.011

    Article  CAS  Google Scholar 

  139. G.S. Simate, Synthesis of advanced carbon-based nanocomposites for biomedical application. Sustain. Nanotechnol. Environ. Remediat., 571–611 (2022). https://doi.org/10.1016/B978-0-12-824547-7.00019-9

  140. G. Chen, Y. Qian, H. Zhang, A. Ullah, X. He, Z. Zhou, H. Fenniri, J. Shen, Advances in cancer theranostics using organic-inorganic hybrid nanotechnology. Appl. Mater. Today. 23, 101003 (2021). https://doi.org/10.1016/J.APMT.2021.101003

    Article  Google Scholar 

  141. G. Dutta, S. Manickam, A. Sugumaran, Stimuli-responsive hybrid metal nanocomposite – a promising technology for effective anticancer therapy. Int. J. Pharm. 624, 121966 (2022). https://doi.org/10.1016/J.IJPHARM.2022.121966

    Article  CAS  Google Scholar 

  142. A.O. Oladipo, S.I.I. Iku, M. Ntwasa, T.T.I. Nkambule, B.B. Mamba, T.A.M. Msagati, Doxorubicin conjugated hydrophilic AuPt bimetallic nanoparticles fabricated from Phragmites australis: characterization and cytotoxic activity against human cancer cells. J. Drug Deliv. Sci. Technol. 57, 101749 (2020). https://doi.org/10.1016/J.JDDST.2020.101749

    Article  CAS  Google Scholar 

  143. E. Soratijahromi, S. Mohammadi, R. Dehdari Vais, N. Azarpira, N. Sattarahmady, Photothermal/sonodynamic therapy of melanoma tumor by a gold/manganese dioxide nanocomposite: in vitro and in vivo studies. Photodiagnosis Photodyn. Ther. 31, 101846 (2020). https://doi.org/10.1016/J.PDPDT.2020.101846

    Article  CAS  Google Scholar 

  144. P. Das, S.V. Mudigunda, G. Darabdhara, P.K. Boruah, S. Ghar, A.K. Rengan, M.R. Das, Biocompatible functionalized AuPd bimetallic nanoparticles decorated on reduced graphene oxide sheets for photothermal therapy of targeted cancer cells. J. Photochem. Photobiol. B Biol. 212, 112028 (2020). https://doi.org/10.1016/J.JPHOTOBIOL.2020.112028

    Article  CAS  Google Scholar 

  145. J. Shi, L. Wang, J. Gao, Y. Liu, J. Zhang, R. Ma, R. Liu, Z. Zhang, A fullerene-based multi-functional nanoplatform for cancer theranostic applications. Biomaterials. 35, 5771–5784 (2014). https://doi.org/10.1016/J.BIOMATERIALS.2014.03.071

    Article  CAS  Google Scholar 

  146. M.K. Kumawat, M. Thakur, R. Bahadur, T. Kaku, R.S. Prabhuraj, A. Ninawe, R. Srivastava, Preparation of graphene oxide-graphene quantum dots hybrid and its application in cancer theranostics. Mater. Sci. Eng. C. 103, 109774 (2019). https://doi.org/10.1016/J.MSEC.2019.109774

    Article  CAS  Google Scholar 

  147. H. Ramsurn, R.B. Gupta, Hydrogenation by nanoparticle catalysts, New Futur. Dev. Catal. Catal. by Nanoparticles., 347–374 (2013). https://doi.org/10.1016/B978-0-444-53874-1.00016-0

  148. G. Sharma, A. Kumar, S. Sharma, M. Naushad, R. Prakash Dwivedi, Z.A. ALOthman, G.T. Mola, Novel development of nanoparticles to bimetallic nanoparticles and their composites: a review. J. King Saud Univ. - Sci. 31, 257–269 (2019). https://doi.org/10.1016/J.JKSUS.2017.06.012

    Article  Google Scholar 

  149. A. Zaleska-Medynska, M. Marchelek, M. Diak, E. Grabowska, Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties. Adv. Colloid Interface Sci. 229, 80–107 (2016). https://doi.org/10.1016/J.CIS.2015.12.008

    Article  CAS  Google Scholar 

  150. V. Amendola, A. Guadagnini, S. Agnoli, D. Badocco, P. Pastore, G. Fracasso, M. Gerosa, F. Vurro, A. Busato, P. Marzola, Polymer-coated silver-iron nanoparticles as efficient and biodegradable MRI contrast agents. J. Colloid Interface Sci. 596, 332–341 (2021). https://doi.org/10.1016/J.JCIS.2021.03.096

    Article  CAS  Google Scholar 

  151. A. Naghilou, O. Bomati-Miguel, A. Subotic, R. Lahoz, M. Kitzler-Zeiler, C. Radtke, M.A. Rodríguez, W. Kautek, Femtosecond laser generation of bimetallic oxide nanoparticles with potential X-ray absorbing and magnetic functionalities for medical imaging applications. Ceram. Int. 47, 29363–29370 (2021). https://doi.org/10.1016/J.CERAMINT.2021.07.103

    Article  CAS  Google Scholar 

  152. F. He, H. Ji, L. Feng, Z. Wang, Q. Sun, C. Zhong, D. Yang, S. Gai, P. Yang, J. Lin, Construction of thiol-capped ultrasmall Au–Bi bimetallic nanoparticles for X-ray CT imaging and enhanced antitumor therapy efficiency. Biomaterials. 264, 120453 (2021). https://doi.org/10.1016/J.BIOMATERIALS.2020.120453

    Article  CAS  Google Scholar 

  153. K.A. Elsayed, M. Alomari, Q.A. Drmosh, M. Alheshibri, A. Al Baroot, T.S. Kayed, A.A. Manda, A.L. Al-Alotaibi, Fabrication of ZnO-Ag bimetallic nanoparticles by laser ablation for anticancer activity. Alexandria Eng. J. 61, 1449–1457 (2022). https://doi.org/10.1016/J.AEJ.2021.06.051

    Article  Google Scholar 

  154. Y. Song, Z. Qu, J. Li, L. Shi, W. Zhao, H. Wang, T. Sun, T. Jia, Y. Sun, Fabrication of the biomimetic DOX/Au@Pt nanoparticles hybrid nanostructures for the combinational chemo/photothermal cancer therapy. J. Alloys Compd. 881, 160592 (2021). https://doi.org/10.1016/J.JALLCOM.2021.160592

    Article  CAS  Google Scholar 

  155. P. Shende, P. Shah, Carbohydrate-based magnetic nanocomposites for effective cancer treatment. Int. J. Biol. Macromol. 175, 281–293 (2021). https://doi.org/10.1016/J.IJBIOMAC.2021.02.044

    Article  CAS  Google Scholar 

  156. P. Bhatia, S.S. Verma, M.M. Sinha, Tunable plasmonic properties of elongated bimetallic alloys nanoparticles towards deep UV-NIR absorbance and sensing. J. Quant. Spectrosc. Radiat. Transf. 241, 106751 (2020). https://doi.org/10.1016/J.JQSRT.2019.106751

    Article  CAS  Google Scholar 

  157. H. Du, O.U. Akakuru, C. Yao, F. Yang, A. Wu, Transition metal ion-doped ferrites nanoparticles for bioimaging and cancer therapy. Transl. Oncol. 15, 101264 (2022). https://doi.org/10.1016/J.TRANON.2021.101264

    Article  CAS  Google Scholar 

  158. C. de la Encarnación, D. Jimenez de Aberasturi, L.M. Liz-Marzán, Multifunctional plasmonic-magnetic nanoparticles for bioimaging and hyperthermia. Adv. Drug Deliv. Rev. 189, 114484 (2022). https://doi.org/10.1016/J.ADDR.2022.114484

    Article  Google Scholar 

  159. M.P. Desai, A.C. Paiva-Santos, M.S. Nimbalkar, K.D. Sonawane, P.S. Patil, K.D. Pawar, Iron tolerant Bacillus badius mediated bimetallic magnetic iron oxide and gold nanoparticles as doxorubicin carrier and for hyperthermia treatment. J. Drug Deliv. Sci. Technol. 81, 104214 (2023). https://doi.org/10.1016/J.JDDST.2023.104214

    Article  CAS  Google Scholar 

  160. P. Pandit, S. Bhagat, P. Rananaware, Z. Mohanta, M. Kumar, V. Tiwari, S. Singh, V.P. Brahmkhatri, Iron oxide nanoparticle encapsulated; folic acid tethered dual metal organic framework-based nanocomposite for MRI and selective targeting of folate receptor expressing breast cancer cells. Microporous Mesoporous Mater. 340, 112008 (2022). https://doi.org/10.1016/J.MICROMESO.2022.112008

    Article  CAS  Google Scholar 

  161. M. Attia, R.D. Glickman, G. Romero, B. Chen, A.J. Brenner, J.Y. Ye, Optimized metal-organic-framework based magnetic nanocomposites for efficient drug delivery and controlled release. J. Drug Deliv. Sci. Technol. 76, 103770 (2022). https://doi.org/10.1016/J.JDDST.2022.103770

    Article  CAS  Google Scholar 

  162. S. Naser Mohammed, A. Mishaal Mohammed, K.F. Al-Rawi, Novel combination of multi-walled carbon nanotubes and gold nanocomposite for photothermal therapy in human breast cancer model. Steroids. 186, 109091 (2022). https://doi.org/10.1016/J.STEROIDS.2022.109091

    Article  CAS  Google Scholar 

  163. M.F. Naief, Y.H. Khalaf, A.M. Mohammed, Novel photothermal therapy using multi-walled carbon nanotubes and platinum nanocomposite for human prostate cancer PC3 cell line. J. Organomet. Chem. 975, 122422 (2022). https://doi.org/10.1016/J.JORGANCHEM.2022.122422

    Article  CAS  Google Scholar 

  164. N. Dhas, K. Parekh, A. Pandey, R. Kudarha, S. Mutalik, T. Mehta, Two dimensional carbon based nanocomposites as multimodal therapeutic and diagnostic platform: a biomedical and toxicological perspective. J. Control. Release. 308, 130–161 (2019). https://doi.org/10.1016/J.JCONREL.2019.07.016

    Article  CAS  Google Scholar 

  165. R. Henglei, G. Chunli, L. Min, Z. Liang, Bimetallic Au–Pd nanoparticles/RGO as theranostic nanoplatform for photothermal therapy of throat cancer - an in vitro approach. J. Radiat. Res. Appl. Sci. 15, 100473 (2022). https://doi.org/10.1016/J.JRRAS.2022.100473

    Article  Google Scholar 

  166. N. Tejwan, A.K. Saini, A. Sharma, T.A. Singh, N. Kumar, J. Das, Metal-doped and hybrid carbon dots: a comprehensive review on their synthesis and biomedical applications. J. Control. Release. 330, 132–150 (2021). https://doi.org/10.1016/J.JCONREL.2020.12.023

    Article  CAS  Google Scholar 

  167. S. Hassani, N. Gharehaghaji, B. Divband, Chitosan-coated iron oxide/graphene quantum dots as a potential multifunctional nanohybrid for bimodal magnetic resonance/fluorescence imaging and 5-fluorouracil delivery. Mater. Today Commun. 31, 103589 (2022). https://doi.org/10.1016/J.MTCOMM.2022.103589

    Article  CAS  Google Scholar 

  168. R. Ali, M.H. Aziz, S. Gao, M.I. Khan, F. Li, T. Batool, F. Shaheen, B. Qiu, Graphene oxide/zinc ferrite nanocomposite loaded with doxorubicin as a potential theranostic mediu in cancer therapy and magnetic resonance imaging. Ceram. Int. 48, 10741–10750 (2022). https://doi.org/10.1016/J.CERAMINT.2021.12.290

    Article  CAS  Google Scholar 

  169. M. Gorgizadeh, N. Behzadpour, F. Salehi, F. Daneshvar, R.D. Vais, R. Nazari-Vanani, N. Azarpira, M. Lotfi, N. Sattarahmady, A MnFe2O4/C nanocomposite as a novel theranostic agent in MRI, sonodynamic therapy and photothermal therapy of a melanoma cancer model. J. Alloys Compd. 816, 152597 (2020). https://doi.org/10.1016/J.JALLCOM.2019.152597

    Article  CAS  Google Scholar 

  170. M.İ. Özsoy, S. Türk, F. Fındık, M. Özacar, Carbon–carbon nanocomposites for brake systems and exhaust nozzles. Nanotechnol. Automot. Ind., 131–154 (2022). https://doi.org/10.1016/B978-0-323-90524-4.00007-4

  171. M. Zhang, W. Wang, F. Wu, P. Yuan, C. Chi, N. Zhou, Magnetic and fluorescent carbon nanotubes for dual modal imaging and photothermal and chemo-therapy of cancer cells in living mice. Carbon N. Y. 123, 70–83 (2017). https://doi.org/10.1016/J.CARBON.2017.07.032

    Article  CAS  Google Scholar 

  172. J.-J. Xu, W.-C. Zhang, Y.-W. Guo, X.-Y. Chen, Y.-N. Zhang, Metal nanoparticles as a promising technology in targeted cancer treatment. (2022). https://doi.org/10.1080/10717544.2022.2039804

  173. J. Verma, C. Warsame, R.K. Seenivasagam, N.K. Katiyar, E. Aleem, S. Goel, Nanoparticle-mediated cancer cell therapy: basic science to clinical applications. Cancer Metastasis Rev. 2023(1), 1–27 (2023). https://doi.org/10.1007/S10555-023-10086-2

    Article  Google Scholar 

  174. E.K. Schneider-Futschik, F. Reyes-Ortega, Advantages and disadvantages of using magnetic nanoparticles for the treatment of complicated ocular disorders. Pharmaceutics. 13 (2021). https://doi.org/10.3390/PHARMACEUTICS13081157

  175. Z. Chen, A. Zhang, X. Wang, J. Zhu, Y. Fan, H. Yu, Z. Yang, The advances of carbon nanotubes in cancer diagnostics and therapeutics. J. Nanomater. 2017 (2017). https://doi.org/10.1155/2017/3418932

  176. L. Tang, J. Li, T. Pan, Y. Yin, Y. Mei, Q. **ao, R. Wang, Z. Yan, W. Wang, Versatile carbon nanoplatforms for cancer treatment and diagnosis: strategies, applications and future perspectives. Theranostics. 12, 2290–2321 (2022). https://doi.org/10.7150/THNO.69628

    Article  CAS  Google Scholar 

  177. S.N. Bhatia, X. Chen, M.A. Dobrovolskaia, T. Lammers, Cancer nanomedicine. Nat. Rev. Cancer. 22, 550–556 (2022). https://doi.org/10.1038/S41568-022-00496-9

    Article  CAS  Google Scholar 

  178. C. Roma-Rodrigues, I. Pombo, L. Raposo, P. Pedrosa, A.R. Fernandes, P.V. Baptista, Nanotheranostics targeting the tumor microenvironment. Front. Bioeng. Biotechnol. 7, 197 (2019). https://doi.org/10.3389/FBIOE.2019.00197

    Article  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to Department of Biotechnology Engineering, University Institute of Engineering & Technology, Maharshi Dayanand University for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Dhull.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loura, N., Singh, M. & Dhull, V. Elite nanomaterials in cancer detection and therapy. emergent mater. 6, 1415–1440 (2023). https://doi.org/10.1007/s42247-023-00539-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00539-3

Keywords

Navigation