Log in

CoFe2O4@SiO2–HClO4 magnetic nanoparticles: synthesis and its application in catalysis

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Nanostructured catalysts represent a new frontier between homogeneous and heterogeneous catalysis. Nanocatalysts and nanocatalysis have received intensive attention over the past two decades, because of high activity and selectivity. Owing to this, in the present research work we utilized nanoparticles to improve the catalytic properties of a material. However, the isolation and recovery of these tiny nanoparticles from the reaction mixture are not easy. To overcome this issue, the use of magnetic nanoparticles has emerged as a viable solution; their insoluble and paramagnetic nature enables easy and efficient separation of the catalysts from the reaction mixture with an external magnet. In the present study, the microwave-assisted, three-component reaction between aryl aldehyde, ammonium acetate, and aryl 1,2 diketone that led to the synthesis of 8-phenyl-7H-acenaphtho[1,2-d]imidazoles in the presence of magnetically recoverable nanocatalyst has been described (CoFe2O4@SiO2–HClO4). Characterization of magnetic nanoparticles was carried out with FT-IR, XRD, SEM-EDX, TEM, TGA-DSC, and VSM techniques. The advantages of the present protocol are a simple method of catalyst preparation, high yield of desired products, short reaction time, and easy magnetic recovery and reusability of catalyst. These features provide attractive objectives for the present study.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

MCR:

Multicomponent reaction

MNPs:

Magnetic nanoparticles

NPs:

Nanoparticles

MW:

Microwave

Cat:

Catalyst

References

  1. A. Roy, E. Elzaki, V. Tirth, S. Kajoak, H. Osman, A. Algahtani, S. Islam, L. Nahla, F. Mayeen, U. Khandaker, M. Nazmul, I. Talha, B. Emran, M. Bilal, Catalysts 11(12), 1494 (2021). https://doi.org/10.3390/catal11121494

    Article  CAS  Google Scholar 

  2. P. Sekoai, C. Ouma, S. du Preez, P. Modisha, N. Engelbrecht, D. Bessarabov, A. Ghimire, Application of nanoparticles in biofuels: an overview. Fuel 237, 380 (2019). https://doi.org/10.1016/j.fuel.2018.10.030

    Article  CAS  Google Scholar 

  3. A. Erik, E. Stan, A. Jeroen, W. Gabriel, R. Mohammad, M. Shunsuke, G. Michael, G. Jaime, J. Appl. Phys. 131, 083101 (2022). https://doi.org/10.1063/5.0079016

    Article  CAS  Google Scholar 

  4. S. Bharathala, P. Sharma, Biomedical applications of nanoparticles. Nanotechnology in Modern Animal Biotechnology. 113–132 (2019). https://doi.org/10.1016/b978-0-12-818823-1.00008-9

  5. D. Astruc, Chem. Rev. 120(2), 461 (2020). https://doi.org/10.1021/acs.chemrev.8b00696

    Article  CAS  Google Scholar 

  6. B.K. Yardımcı, Imidazole antifungals: a review of their action mechanisms on cancerous cells. IJSM. 7(3), 139 (2020). https://doi.org/10.21448/ijsm.714310

  7. F. Saccoliti, V. Madia, V. Tudino, A. De Leo, L. Pescatori, A. Messore, R. Di Santo, Eur. J. Med. Chem. 156, 53 (2018). https://doi.org/10.1016/j.ejmech.2018.06.063

    Article  CAS  Google Scholar 

  8. A. Siwach, P. Verma, BMC Chem. 15, 12 (2021). https://doi.org/10.1186/s13065-020-00730-1

    Article  CAS  Google Scholar 

  9. K. Nikolic, D. Agbaba, Cardiovasc. Ther. 30(4), 209 (2011). https://doi.org/10.1111/j.1755-5922.2011.00269.x

    Article  CAS  Google Scholar 

  10. K. Alaoui, N. Dkhireche, M.E. Touhami, Y.E. Kacimi, Review of application of imidazole and imidazole derivatives as corrosion inhibitors of metals (2020), pp. 101–131. https://doi.org/10.4018/978-1-7998-2775-7.ch005

  11. R. Sndaroos, S. Damavandi, Res Chem Intermed 40, 2681–2687 (2014). https://doi.org/10.1007/s11164-013-1121-4

    Article  CAS  Google Scholar 

  12. F. Hasanzadeh, F.K. Behbahani, Russ. J. Org. Chem. 56, 1070–1076 (2020). https://doi.org/10.1134/S1070428020060160

    Article  CAS  Google Scholar 

  13. N.S. Fallah, M. Mokhtary, J. Taibah Univ. Sci. 9(4), 531–537 (2015). https://doi.org/10.1016/j.jtusci.2014.12.004

    Article  Google Scholar 

  14. M. Adib, B. Mohammadi, S. Ansari, H.R. Bijanzadeh, L.G. Zhu, Tetrahedron Lett. 52(18), 2299 (2011). https://doi.org/10.1016/j.tetlet.2011.01.091

    Article  CAS  Google Scholar 

  15. G. Allaedini, M.T. Siti, A. Payam, Int. Nano Lett. 5(4), 183–186 (2015). https://doi.org/10.1007/s40089-015-0153-8

    Article  CAS  Google Scholar 

  16. S. Werner, F. Arthur, J. Colloid Interface Sci. 26, 62 (1968). https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  17. A.K. Chakraborti, R. Gulhane, Chem. Commun. 15, 1896–1897 (2003). https://doi.org/10.1039/b304178f

    Article  CAS  Google Scholar 

  18. J.B. Howard, E.B. Wilson, J. Chem. Phys. 2, 630 (1934). https://doi.org/10.1038/352139a0

    Article  CAS  Google Scholar 

  19. D. Narsimulu, O. Padmaraj, E.S. Srinadhu, N. Satyanarayana, J. Mater. Sci. Mater. Electron. 28, 17208–17214 (2017). https://doi.org/10.1007/s10854-017-7650-7

    Article  CAS  Google Scholar 

  20. J. Hu, Y. Bando, J. Zhan, X. Yuan, T. Sekiguchi, D. Golberg, Adv. Mater. 17, 225 (2005). https://doi.org/10.1002/adma.200401789

    Article  CAS  Google Scholar 

  21. D. Hossein, N. Alireza, S. Saeid, IJETR 2(3), 238 (2014)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge SGB Amravati University for providing laboratory facilities for the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand S. Aswar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakare, N.V., Aswar, A.S. & Salunkhe, N.G. CoFe2O4@SiO2–HClO4 magnetic nanoparticles: synthesis and its application in catalysis. emergent mater. 6, 1285–1297 (2023). https://doi.org/10.1007/s42247-023-00502-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00502-2

Keywords

Navigation