Log in

Fabrication of 3D/2D Bi2MoO6/g-C3N4 heterostructure with enhanced photocatalytic behavior in the degradation of harmful organics

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Recently, construction of composite photocatalyst using different dimensional materials has made researchers to focus on the area of photocatalysis. In this work, 3D/2D Bi2MoO6/g-C3N4 composite was successfully synthesized via solvothermal method. The photocatalytic capabilities of all the synthesized catalyst were tested in the degradation of dyes. The percentage mineralization was determined using total organic carbon (TOC) studies. The synthesized 3D/2D Bi2MoO6/g-C3N4 showed superior photocatalytic performance compared to individual catalyst. The photostability and reusability of Bi2MoO6/g-C3N4 composite was analyzed by recyclability test, and the catalyst was found to be stable even after four consecutive runs. The superior photocatalytic activity of Bi2MoO6/g-C3N4 heterostructure could be attributed to enhanced physicochemical properties such as band gap, surface area, reduced recombination rates, etc. Trap** experiment carried out to identify the influence of radicals, which showed that both super oxide and hydroxyl radicals were found to be predominant in photocatalytic reaction. A possible pathway of exciton transmission was illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Singh, P. Kumari, S. Basu, Journal of Photochemistry & Photobiology A : Chemistry degradation of toxic industrial dyes using SnO 2 / g-C 3 N 4 nanocomposites : Role of mass ratio on photocatalytic activity. J. Photochem. Photobiol. A Chem. 371, 136–143 (2019). https://doi.org/10.1016/j.jphotochem.2018.11.014

    Article  CAS  Google Scholar 

  2. X. Wu, C. Liu, X. Li, X. Zhang, C. Wang, Y. Liu, Materials science in semiconductor processing effect of morphology on the photocatalytic activity of g-C 3 N 4 photocatalysts under visible-light irradiation. Mater. Sci. Semicond. Process. 32, 76–81 (2015). https://doi.org/10.1016/j.mssp.2014.11.047

    Article  CAS  Google Scholar 

  3. Li C, Lou Z, Yang Y, Chenxi Li, Zirui Lou, Yinchen Yang, Yichen Wang, Yangfan Lu, Zhizhen Ye, and Li** Zhu, et al., 2–9 (2019). https://doi.org/10.1021/acs.langmuir.8b03867

  4. D. An, C. Thanh, N. Pham, et al., Journal of physics and chemistry of solids one-step synthesis of oxygen doped g-C 3 N 4 for enhanced visible-light photodegradation of rhodamine B. J. Phys. Chem. Solids 151, 109900 (2021). https://doi.org/10.1016/j.jpcs.2020.109900

    Article  CAS  Google Scholar 

  5. Y. Song, Y. Peng, N. Viet, et al., Applied surface science multifunctional self-assembly 3D Ag / g-C 3 N 4 / RGO aerogel as highly efficient adsorbent and photocatalyst for R6G removal from wastewater. Appl. Surf. Sci. 542, 148584 (2021). https://doi.org/10.1016/j.apsusc.2020.148584

    Article  CAS  Google Scholar 

  6. M. Babaei, M. Hadi, P. Gharbani, Diamond & Related materials preparation of a novel Z -scheme g-C 3 N 4 / RGO / Bi2Fe4O9 nanophotocatalyst for degradation of Congo Red dye under visible light. Diam. Relat. Mater. 109, 108008 (2020). https://doi.org/10.1016/j.diamond.2020.108008

    Article  CAS  Google Scholar 

  7. M.N. Tahir, Synthesis of hierarchically organized α-Fe2O3 nanostructures for the photocatalytic degradation of methylene blue. Emergent Mater 3, 605–612 (2020). https://doi.org/10.1007/s42247-020-00127-9

    Article  CAS  Google Scholar 

  8. J. Singh, A. Arora, S. Basu, Synthesis of coral like WO 3 / g-C 3 N 4 nanocomposites for the removal of hazardous dyes under visible light. J. Alloys Compd. 808, 151734 (2019). https://doi.org/10.1016/j.jallcom.2019.151734

    Article  CAS  Google Scholar 

  9. Anwer H, Mahmood A, Lee J, et al., Photocatalysts for degradation of dyes in industrial effluents Opportunities and challenges 12:955–972 (2019)

  10. A. Ojha, P. Thareja, Graphene-based nanostructures for enhanced photocatalytic degradation of industrial dyes. Emergent. Mater. 3, 169–180 (2020). https://doi.org/10.1007/s42247-020-00081-6

    Article  CAS  Google Scholar 

  11. A.M. Abdullah, S. Al-Kandari, A.M. Mohamed, H. Al-Kandari, Controlled synthesis of carbon nitride-TiO2 nanocomposites for prompt photocatalytic degradation of individual and mixed organic dyes at room temperature. Emergent. Mater. 3, 955–963 (2020). https://doi.org/10.1007/s42247-020-00132-y

    Article  CAS  Google Scholar 

  12. J. Wang, L. Ren, D. Zhang, X.Y. Hao, J.Y. Gong, X. **ao, Y.X. Jiang, Z.W. Tong, Fabrication of Bi2MoO6/BiOI heterojunction photocatalysts for enhanced photodegradation of RhB. J. Mater. Res. 33, 3928–3935 (2018). https://doi.org/10.1557/jmr.2018.345

    Article  CAS  Google Scholar 

  13. X. Yuan, W. Li, Applied Clay Science Graphitic-C 3 N 4 modi fi ed ZnAl-layered double hydroxides for enhanced photocatalytic removal of organic dye. Appl. Clay Sci. 138, 107–113 (2017). https://doi.org/10.1016/j.clay.2017.01.004

    Article  CAS  Google Scholar 

  14. C. Ting, Z. Lei, Y. Zhen, et al., Enhanced visible-light photocatalytic activity of ternary heterojunctions for ciprofloxacin degradation with narrow band gap and high charge carrier mobility. 36, 1083–1090 (2020). https://doi.org/10.1007/s40242-020-0301-1

  15. Pham T, Shin EW Thanh-Truc Pham, Eun Woo Shin (2018). https://doi.org/10.1021/acs.langmuir.8b02596

  16. J. Guo, C. Shen, J. Sun, et al., Highly efficient activation of peroxymonosulfate by Co 3 O 4 / Bi 2 MoO 6 p-n heterostructure composites for the degradation of norfloxacin under visible light irradiation. Sep. Purif. Technol. 259, 118109 (2021). https://doi.org/10.1016/j.seppur.2020.118109

    Article  CAS  Google Scholar 

  17. W. Jo, N.C.S. Selvam, Enhanced visible light-driven photocatalytic performance of ZnO – g-C 3 N 4 coupled with graphene oxide as a novel ternary nanocomposite. J. Hazard. Mater. 299, 462–470 (2015). https://doi.org/10.1016/j.jhazmat.2015.07.042

    Article  CAS  Google Scholar 

  18. T. Kanagaraj, S. Thiripuranthagan, S.M.K. Paskalis, H. Abe, Visible light photocatalytic activities of template free porous graphitic carbon nitride—BiOBr composite catalysts towards the mineralization of reactive dyes. Appl. Surf. Sci. 426, 1030–1045 (2017). https://doi.org/10.1016/j.apsusc.2017.07.255

    Article  CAS  Google Scholar 

  19. G. Zhang, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Fabrication of Bi2MoO6/ZnO hierarchical heterostructures with enhanced visible-light photocatalytic activity. Appl. Catal. B Environ. 250, 313–324 (2019). https://doi.org/10.1016/j.apcatb.2019.03.055

    Article  CAS  Google Scholar 

  20. V. Umapathy, A. Manikandan, S.A. Antony, et al., Structure , morphology and opto-magnetic properties of Bi 2 MoO 6 nano-photocatalyst synthesized by sol − gel method. Trans. Nonferrous Metals Soc. China 25, 3271–3278 (2015). https://doi.org/10.1016/S1003-6326(15)63948-6

    Article  CAS  Google Scholar 

  21. J. Li, Y. Yin, E. Liu, Y. Ma, J. Wan, J. Fan, X. Hu, In situ growing Bi 2 MoO 6 on g-C 3 N 4 nanosheets with enhanced photocatalytic hydrogen evolution and disinfection of bacteria under visible light irradiation. J. Hazard. Mater. 321, 183–192 (2017). https://doi.org/10.1016/j.jhazmat.2016.09.008

    Article  CAS  Google Scholar 

  22. J. Di, J. **a, M. Ji, et al., The synergistic role of carbon quantum dots for the improved photocatalytic performance of Bi2MoO6. Nanoscale 7, 11433–11443 (2015). https://doi.org/10.1039/C5NR01350J

    Article  CAS  Google Scholar 

  23. H. Huang, L. Liu, Y. Zhang, N. Tian, One pot hydrothermal synthesis of a novel BiIO4/Bi2MoO6 heterojunction photocatalyst with enhanced visible-light-driven photocatalytic activity for rhodamine B degradation and photocurrent generation. J. Alloys Compd. 619, 807–811 (2015). https://doi.org/10.1016/j.jallcom.2014.08.262

    Article  CAS  Google Scholar 

  24. R. Varma, S. Chaurasia, N. Patel, B.M. Bhanage, Journal of environmental chemical engineering interplay of adsorption , photo-absorption , electronic structure and charge carrier dynamics on visible light driven photocatalytic activity of Bi 2 MoO 6 / rGO ( 0D / 2D ) heterojunction. J Environ Chem Eng 8, 104551 (2020). https://doi.org/10.1016/j.jece.2020.104551

    Article  CAS  Google Scholar 

  25. M. Wang, M. You, P. Guo, H. Tang, C. Lv, Y. Zhang, T. Zhu, J. Han, Hydrothermal synthesis of Sm-doped Bi 2 MoO 6 and its high photocatalytic performance for the degradation of Rhodamine B. J. Alloys Compd. 728, 739–746 (2017). https://doi.org/10.1016/j.jallcom.2017.09.066

    Article  CAS  Google Scholar 

  26. M. Kasinathan, S. Thiripuranthagan, A. Sivakumar, Fabrication of novel Bi 2 MoO 6 / N-rGO catalyst for the efficient photocatalytic degradation of harmful dyes. Mater. Res. Bull. 125, 110782 (2020). https://doi.org/10.1016/j.materresbull.2020.110782

    Article  CAS  Google Scholar 

  27. X. Li, M. Su, G. Zhu, K. Zhang, X. Zhang, J. Fan, Fabrication of a novel few-layer WS2/Bi2MoO6 plate-on-plate heterojunction structure with enhanced visible-light photocatalytic activity. Dalton Trans. 47, 10046–10056 (2018). https://doi.org/10.1039/C8DT02109K

    Article  CAS  Google Scholar 

  28. D. Wang, H. Shen, L. Guo, C. Wang, Synergistic effect. 2, 71052–71060 (2016). https://doi.org/10.1039/c6ra12898j

  29. Z. Li, X. Meng, Z. Zhang, Applied Surface Science Fewer-layer BN nanosheets-deposited on Bi 2 MoO 6 microspheres with enhanced visible light-driven photocatalytic activity. Appl. Surf. Sci. 483, 572–580 (2019). https://doi.org/10.1016/j.apsusc.2019.03.245

    Article  CAS  Google Scholar 

  30. Z. Zhang, W. Wang, D. Jiang, J. Xu, CuPc sensitized Bi2MoO6 with remarkable photo-response and enhanced photocatalytic activity. Catal. Commun. 55, 15–18 (2014). https://doi.org/10.1016/j.catcom.2014.06.004

    Article  CAS  Google Scholar 

  31. Y. Feng, X. Yan, C. Liu, Y. Hong, L. Zhu, M. Zhou, W. Shi, Applied surface science hydrothermal synthesis of CdS / Bi 2 MoO 6 heterojunction photocatalysts with excellent visible-light-driven photocatalytic performance. Appl. Surf. Sci. 353, 87–94 (2015). https://doi.org/10.1016/j.apsusc.2015.06.061

    Article  CAS  Google Scholar 

  32. Y. Miao, H. Yin, L. Peng, Y. Huo, H. Li, BiOBr/Bi2MoO6 composite in flower-like microspheres with enhanced photocatalytic activity under visible-light irradiation. RSC Adv. 6, 13498–13504 (2016). https://doi.org/10.1039/C5RA18987J

    Article  CAS  Google Scholar 

  33. L. Zhang, Q. Shen, L. Yu, F. Huang, C. Zhang, J. Sheng, F. Zhang, D. Cheng, H. Yang, Fabrication of a high-adsorption N–TiO2/Bi2MoO6 composite photocatalyst with a hierarchical heterostructure for boosted weak-visible-light photocatalytic degradation of tetracycline. CrystEngComm 22, 5481–5490 (2020). https://doi.org/10.1039/D0CE00761G

    Article  CAS  Google Scholar 

  34. Q. Wang, Q. Lu, M. Wei, et al., Fabrication and highly enhanced photoelectrocatalytic properties under visible-light irradiation. J. Sol-Gel Sci. Technol., 84–92 (2018). https://doi.org/10.1007/s10971-017-4519-4

  35. M. Kasinathan, S. Thiripuranthagan, A. Sivakumar, A facile fabrication of Br-modi fi ed g-C 3 N 4 / rGO composite catalyst for enhanced visible photocatalytic activity towards the degradation of harmful dyes. Mater. Res. Bull. 130, 110870 (2020). https://doi.org/10.1016/j.materresbull.2020.110870

    Article  CAS  Google Scholar 

  36. A. Brindha, T. Sivakumar, Visible active N, S co-doped TiO2/graphene photocatalysts for the degradation of hazardous dyes. J. Photochem. Photobiol. A Chem. 340, 146–156 (2017). https://doi.org/10.1016/j.jphotochem.2017.03.010

    Article  CAS  Google Scholar 

  37. M. Kasinathan, S. Thiripuranthagan, A. Sivakumar, Optik Fabrication of metal-free 2D / 2D g-C 3 N 4 / rGO composite towards the degradation of harmful organics. Opt - Int J Light Electron Opt 219, 165023 (2020). https://doi.org/10.1016/j.ijleo.2020.165023

    Article  CAS  Google Scholar 

  38. T. Kanagaraj, S. Thiripuranthagan, Photocatalytic activities of novel SrTiO3 – BiOBr heterojunction catalysts towards the degradation of reactive dyes. Appl. Catal. B Environ. 207, 218–232 (2017). https://doi.org/10.1016/j.apcatb.2017.01.084

    Article  CAS  Google Scholar 

  39. E. Elangovan, T. Sivakumar, A. Brindha, K. Thamaraiselvi, K. Sakthivel, K. Kathiravan, S. Aishwarya, Visible Active N-Doped TiO 2 /WS 2 Heterojunction nano rods: synthesis, characterization and photocatalytic activity. J. Nanosci. Nanotechnol. 19, 4429–4437 (2019). https://doi.org/10.1166/jnn.2019.16482

    Article  CAS  Google Scholar 

  40. V. Ramamoorthy, K. Kannan, A.I.J. Joseph, et al., Photocatalytic degradation of acid orange dye using silver impregnated TiO2/SiO2 composite catalysts. J. Nanosci. Nanotechnol. 16, 9980–9986 (2016). https://doi.org/10.1166/jnn.2016.12071

    Article  CAS  Google Scholar 

  41. V. Ramamoorthy, K. Kannan, S. Thiripuranthagan, Photocatalytic degradation of textile reactive dyes—a comparative study using nano silver decorated titania-silica composite photocatalysts. J. Nanosci. Nanotechnol. 18, 2921–2930 (2017). https://doi.org/10.1166/jnn.2018.14304

    Article  CAS  Google Scholar 

  42. B. Appavu, K. Kannan, S. Thiripuranthagan, Enhanced visible light photocatalytic activities of template free mesoporous nitrogen doped reduced graphene oxide/titania composite catalysts. J. Ind. Eng. Chem. 36, 184–193 (2016). https://doi.org/10.1016/j.jiec.2016.01.042

    Article  CAS  Google Scholar 

  43. B. Appavu, S. Thiripuranthagan, S. Ranganathan, E. Erusappan, K. Kannan, BiVO4 /N-rGO nano composites as highly efficient visible active photocatalyst for the degradation of dyes and antibiotics in eco system. Ecotoxicol. Environ. Saf. 151, 118–126 (2018). https://doi.org/10.1016/j.ecoenv.2018.01.008

    Article  CAS  Google Scholar 

  44. L. Jia, H. Zhang, P. Wu, Q. Liu, W. Yang, J. He, C. Liu, W. Jiang, Applied Surface Science Graphite-like C3N4-coated transparent superhydrophilic glass with controllable superwettability and high stability. Appl. Surf. Sci. 532, 147309 (2020). https://doi.org/10.1016/j.apsusc.2020.147309

    Article  CAS  Google Scholar 

  45. T. **an, H. Yang, L.J. Di, J.F. Dai, Enhanced photocatalytic activity of BaTiO 3 @ g-C 3 N 4 for the degradation of methyl orange under simulated sunlight irradiation. 622, 1098–1104 (2015). https://doi.org/10.1016/j.jallcom.2014.11.051

  46. W. Wang, Q. Niu, G. Zeng, C. Zhang, D. Huang, B. Shao, C. Zhou, Y. Yang, Y. Liu, H. Guo, W. **ong, L. Lei, S. Liu, H. Yi, S. Chen, X. Tang, Applied Catalysis B : Environmental 1D porous tubular g-C 3 N 4 capture black phosphorus quantum dots as 1D / 0D metal-free photocatalysts for oxytetracycline hydrochloride degradation and hexavalent chromium reduction. Appl. Catal. B Environ. 273, 119051 (2020). https://doi.org/10.1016/j.apcatb.2020.119051

    Article  CAS  Google Scholar 

  47. A. Khan, U. Alam, W. Raza, D. Bahnemann, M. Muneer, Journal of physics and chemistry of solids One-pot , self-assembled hydrothermal synthesis of 3D flower-like CuS / g-C 3 N 4 composite with enhanced photocatalytic activity under visible-light irradiation. J. Phys. Chem. Solids 115, 59–68 (2018). https://doi.org/10.1016/j.jpcs.2017.10.032

    Article  CAS  Google Scholar 

  48. M. Inagaki, T. Tsumura, T. Kinumoto, M. Toyoda, Graphitic carbon nitrides ( g -C 3 N 4 ) with comparative discussion to carbon materials. Carbon N Y 141, 580–607 (2019). https://doi.org/10.1016/j.carbon.2018.09.082

    Article  CAS  Google Scholar 

  49. U. Ghosh, A. Majumdar, A. Pal, 3D macroporous architecture of self-assembled defect-engineered ultrathin g-C 3 N 4 nanosheets for tetracycline degradation under LED light irradiation. Mater. Res. Bull. 133, 111074 (2021). https://doi.org/10.1016/j.materresbull.2020.111074

    Article  CAS  Google Scholar 

  50. Z. Tong, D. Yang, T. **ao, Y. Tian, Z. Jiang, Biomimetic fabrication of g-C 3 N 4 / TiO 2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation. Chem. Eng. J. 260, 117–125 (2015). https://doi.org/10.1016/j.cej.2014.08.072

    Article  CAS  Google Scholar 

  51. Z. Shi, Y. Zhang, X. Shen, G. Duoerkun, B. Zhu, L. Zhang, M. Li, Z. Chen, Fabrication of g-C 3 N 4 / BiOBr heterojunctions on carbon fibers as weaveable photocatalyst for degrading tetracycline hydrochloride under visible light. Chem. Eng. J. 386, 124010 (2020). https://doi.org/10.1016/j.cej.2020.124010

    Article  CAS  Google Scholar 

  52. Q. Liu, T. Chen, Y. Guo, Z. Zhang, X. Fang, Applied Catalysis B : Environmental ultrathin g-C 3 N 4 nanosheets coupled with carbon nanodots as 2D / 0D composites for efficient photocatalytic H 2 evolution. Appl. Catal. B Environ. 193, 248–258 (2016). https://doi.org/10.1016/j.apcatb.2016.04.034

    Article  CAS  Google Scholar 

  53. Y. Yang, B. Mao, G. Gong, et al., ScienceDirect In-situ growth of Zn e AgIn 5 S 8 quantum dots photocatalysts with enhanced hydrogen production. 4, 1–10 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.102

  54. M. Salman, G. Yang, I. Ayub, et al., Applied Surface Science In situ decoration of g-C 3 N 4 quantum dots on 1D branched TiO 2 loaded with plasmonic Au nanoparticles and improved the photocatalytic hydrogen evolution activity. Appl. Surf. Sci. 519, 146208 (2020). https://doi.org/10.1016/j.apsusc.2020.146208

    Article  CAS  Google Scholar 

  55. Badreldin A, Zakaria Y, Mansour S, Abdel-wahab A. Surface treatment-controlled solvothermal synthesis of highly active reduced 1D titania with heterojunctioned carbon allotrope (2021)

  56. Y. Zhang, J. Xu, J. Mei, et al., Enhanced visible-light induced synthesis and conversion. J. Hazard. Mater. 394, 122529 (2020). https://doi.org/10.1016/j.jhazmat.2020.122529

    Article  CAS  Google Scholar 

  57. P. Liu, Z. Zhang, R. Hao, Y. Huang, W. Liu, Y. Tan, P. Li, J. Yan, K. Liu, Ultra-highly stable zinc metal anode via 3D-printed g-C 3 N 4 modulating interface for long life energy storage systems. Chem. Eng. J. 403, 126425 (2021). https://doi.org/10.1016/j.cej.2020.126425

    Article  CAS  Google Scholar 

  58. F. Li, Z. Yu, H. Shi, Q. Yang, Q. Chen, Y. Pan, G. Zeng, L. Yan, A Mussel-inspired method to fabricate reduced graphene oxide / g-C 3 N 4 composites membranes for catalytic decomposition and oil-in-water emulsion separation. Chem. Eng. J. 322, 33–45 (2017). https://doi.org/10.1016/j.cej.2017.03.145

    Article  CAS  Google Scholar 

  59. X. Wu, S. Li, B. Wang, J. Liu, M. Yu, Free-standing 3D network-like cathode based on biomass-derived N- doped carbon / graphene / g-C 3 N 4 hybrid ultrathin sheets as sulfur host for high-rate Li-S battery. Renew. Energy 158, 509–519 (2020). https://doi.org/10.1016/j.renene.2020.05.098

    Article  CAS  Google Scholar 

  60. M. Shetty, C. Schü, M. Shastri, et al., One-pot supercritical water synthesis of Bi 2 MoO 6 -RGO 2D heterostructure as anodes for Li-ion batteries. (2020). https://doi.org/10.1016/j.ceramint.2020.12.061

  61. H. Gao, X. Zhao, H. Zhang, J. Chen, S. Wang, H. Yang, Construction of 2D / 0D / 2D Face-to-face contact g -C 3 N 4 @ Au @ Bi 4 Ti 3 O 12 heterojunction photocatalysts for degradation of rhodamine B. J. Electron. Mater. 49, 5248–5259 (2020). https://doi.org/10.1007/s11664-020-08243-2

    Article  CAS  Google Scholar 

  62. C. Zhao, C. Shao, X. Li, X. Li, R. Tao, X. zhou, Y. Liu, Magnetically separable Bi 2 MoO 6 / ZnFe 2 O 4 heterostructure nano fi bers : controllable synthesis and enhanced visible light photocatalytic activity. J. Alloys Compd. 747, 916–925 (2018). https://doi.org/10.1016/j.jallcom.2018.03.107

    Article  CAS  Google Scholar 

  63. A. Phuruangrat, S. Putdum, P. Dumrongrojthanath, Materials science in semiconductor processing enhanced properties for visible-light-driven photocatalysis of Ag nanoparticle modified Bi 2 MoO 6 nanoplates. Mater. Sci. Semicond. Process. 34, 175–181 (2015). https://doi.org/10.1016/j.mssp.2015.02.028

    Article  CAS  Google Scholar 

  64. D. Yue, D. Chen, Z. Wang, et al., Enhancement of visible photocatalytic performances of a Bi2MoO6–BiOCl nanocomposite with plate-on-plate heterojunction structure, 26314–26321 (2014). https://doi.org/10.1039/c4cp03865g

  65. M.S.A.P.P.M. Anbarasan, A facile microwave stimulated g - C3N4 / α - Fe 2 O 3 hybrid photocatalyst with superior photocatalytic activity and attractive cycling stability. J. Mater. Sci. Mater. Electron. 30, 10985–10993 (2019). https://doi.org/10.1007/s10854-019-01439-1

    Article  CAS  Google Scholar 

  66. Wei H, Mcmaster WA, Tan JZY, et al., Mesoporous TiO 2 / g - C 3 N 4 Microspheres with enhanced visible-light photocatalytic activity.(2017). https://doi.org/10.1021/acs.jpcc.7b06493

  67. Chem JM. Enhancement of photocatalytic activity of Bi 2 WO 6 hybridized with. 11568–11573 (2012)https://doi.org/10.1039/c2jm16873a

  68. Y. Tian, F. Cheng, X. Zhang, F. Yan, B. Zhou, Z. Chen, J. Liu, F. **, X. Dong, Solvothermal synthesis and enhanced visible light photocatalytic activity of novel graphitic carbon nitride – Bi 2 MoO 6 heterojunctions. Powder Technol. 267, 126–133 (2014). https://doi.org/10.1016/j.powtec.2014.07.021

    Article  CAS  Google Scholar 

  69. Y. Sun, J. Wu, T. Ma, P. Wang, C. Cui, D. Ma, Synthesis of C@Bi 2 MoO 6 nanocomposites with enhanced visible light photocatalytic activity. Appl. Surf. Sci. 403, 141–150 (2017). https://doi.org/10.1016/j.apsusc.2017.01.130

    Article  CAS  Google Scholar 

  70. X. Liu, J. Wang, Y. Dong, H. Li, Y. **a, H. Wang, One-step synthesis of Bi 2 MoO 6 /reduced graphene oxide aerogel composite with enhanced adsorption and photocatalytic degradation performance for methylene blue. Mater. Sci. Semicond. Process. 88, 214–223 (2018). https://doi.org/10.1016/j.mssp.2018.08.012

    Article  CAS  Google Scholar 

  71. X. Chen, J. Wei, R. Hou, Y. Liang, Z. **e, Y. Zhu, X. Zhang, H. Wang, Growth of g-C3N4 on mesoporous TiO2 spheres with high photocatalytic activity under visible light irradiation. Appl. Catal. B Environ. 188, 342–350 (2016). https://doi.org/10.1016/j.apcatb.2016.02.012

    Article  CAS  Google Scholar 

  72. N. BOB, F. Yi, J. Ma, et al., Insights into the enhanced adsorption / photocatalysis mechanism of a. J. Alloys Compd. 821, 153557 (2020). https://doi.org/10.1016/j.jallcom.2019.153557

    Article  CAS  Google Scholar 

  73. C. Zhao, G. Tan, J. Huang, et al., Heterojunctions and their mineralization properties. (2015). https://doi.org/10.1021/acsami.5b06501

  74. T. Ma, J. Bai, H. Liang, J. Wang, C. Li, An efficient method for assembling layered g-C 3 N 4 nanosheets grow on 1D pore channels carbon fibers as a composite photocatalyst by ultrasound-assisted exfoliation and hydrothermal method. Vaccum 134, 130–135 (2016). https://doi.org/10.1016/j.vacuum.2016.10.013

    Article  CAS  Google Scholar 

  75. M. Kasinathan, S. Thiripuranthagan, A. Sivakumar, Fabrication of sphere-like Bi 2 MoO 6 / ZnO composite catalyst with strong photocatalytic behavior for the detoxification of harmful organic dyes. Opt Mater (Amst) 109, 110218 (2020). https://doi.org/10.1016/j.optmat.2020.110218

    Article  CAS  Google Scholar 

  76. Y. Xu, Y. Gong, H. Ren, W. Liu, L. Niu, C. Li, X. Liu, In situ structural modification of graphitic carbon nitride by alkali halides and influence on photocatalytic activity. RSC Adv. 7, 32592–32600 (2017). https://doi.org/10.1039/c7ra05555b

    Article  CAS  Google Scholar 

  77. P. Wang, Y. Ao, C. Wang, J. Hou, J. Qian, A one-pot method for the preparation of graphene-Bi 2MoO 6 hybrid photocatalysts that are responsive to visible-light and have excellent photocatalytic activity in the degradation of organic pollutants. Carbon N Y 50, 5256–5264 (2012). https://doi.org/10.1016/j.carbon.2012.06.063

    Article  CAS  Google Scholar 

  78. Kasinathan M, Thiripuranthagan S, Sivakumar A (n.d.) CO CO

  79. R. Zalecki, W.M. Woch, M. Kowalik, A. Kołodziejczyk, Superconductor from X-ray photoemission spectroscopy. 118, 393–395 (2010)

  80. D.A. Zatsepin, A.F. Zatsepin, D.W. Boukhvalov, N.V. Gavrilov, Bi-doped silica glass : a combined XPS e DFT study of electronic structure and pleomorphic imperfections. J. Alloys Compd. 829, 154459 (2020). https://doi.org/10.1016/j.jallcom.2020.154459

    Article  CAS  Google Scholar 

  81. K.J. Samdani, J.H. Park, D.W. Joh, K.T. Lee, Self-Assembled Bi2MoO6 nanopetal array on carbon spheres toward enhanced supercapacitor performance. ACS Sustain. Chem. Eng. 6, 16702–16712 (2018). https://doi.org/10.1021/acssuschemeng.8b03988

    Article  CAS  Google Scholar 

  82. J. Yang, X. Niu, S. An, W. Chen, J. Wang, W. Liu, Facile synthesis of Bi2MoO6-MIL-100(Fe) metal-organic framework composites with enhanced photocatalytic performance. RSC Adv. 7, 2943–2952 (2017). https://doi.org/10.1039/c6ra26110h

    Article  CAS  Google Scholar 

  83. Ji W, Shen R, Yang R, et al., Electronic supplementary information ( ESI ) partially nitrided molybdenum trioxide with promoted performance as the anode material for lithium-ion. 3–6 (2013)

  84. L. Zhang, L. Wu, J. Li, J. Lei, Electrodeposition of amorphous molybdenum sulfide thin film for electrochemical hydrogen evolution reaction. BMC Chem 13, 1–9 (2019). https://doi.org/10.1186/s13065-019-0600-0

    Article  CAS  Google Scholar 

  85. Z. Zhang, C. Zhao, S. Lin, H. Li, Y. Feng, X. Gao, Oxygen vacancy modified Bi 2 MoO 6 / WO 3 electrode with enhanced photoelectrocatalytic degradation activity toward RhB. Fuel 285, 119171 (2021). https://doi.org/10.1016/j.fuel.2020.119171

    Article  CAS  Google Scholar 

  86. H. Li, Y. Gao, X. Wu, P.H. Lee, K. Shih, Applied surface science fabrication of heterostructured g-C 3 N 4 / Ag-TiO 2 hybrid photocatalyst with enhanced performance in photocatalytic conversion of CO 2 under simulated sunlight irradiation. Appl. Surf. Sci. 402, 198–207 (2017). https://doi.org/10.1016/j.apsusc.2017.01.041

    Article  CAS  Google Scholar 

  87. Darkwah WK Photocatalytic applications of heterostructure graphitic carbon nitride : pollutant degradation , hydrogen gas production ( water splitting ), and CO 2 reduction. 3 (2019)

  88. K. Sivaprakash, M. Induja, P. Gomathi Priya, Facile synthesis of metal free non-toxic boron carbon nitride nanosheets with strong photocatalytic behavior for degradation of industrial dyes. Mater. Res. Bull. 100, 313–321 (2018). https://doi.org/10.1016/j.materresbull.2017.12.039

    Article  CAS  Google Scholar 

Download references

Funding

The author K.Maruthathurai acknowledges the Anna University for financial support under ACRF, whereas S. Aishwarya thank CSIR for providing fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivakumar Thiripuranthagan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

ESM 1

(DOCX 803 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasinathan, M., Thiripuranthagan, S. & Sivakumar, A. Fabrication of 3D/2D Bi2MoO6/g-C3N4 heterostructure with enhanced photocatalytic behavior in the degradation of harmful organics. emergent mater. 4, 1363–1376 (2021). https://doi.org/10.1007/s42247-021-00225-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00225-2

Keywords

Navigation