Log in

Revealing dislocation activity modes during yielding and uniform deformation of low-temperature tempered steel by acoustic emission

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The distinctive distribution of acoustic emission (AE) characteristic parameters generated during tensile testing of low-temperature tempered AISI 4140 steel was investigated. Two clusters of acoustic emission signals were distinguished using power-law distribution fitting and k-means clustering methods. These clusters were identified as resulting from dislocation motion during yielding and dislocation entanglement during uniform plastic deformation. The conclusion is further confirmed by transmission electron microscopy images at different strains. In particular, the unique "arch-shaped" distribution of the acoustic emission energy during yielding implies a change in unusual dislocation motion modes. The effect of carbide precipitation was qualitatively discussed as not considering the primary cause of the formation of this arch-shaped distribution. The evolution of dislocation motion modes during yielding of low-temperature tempered martensite was elucidated by comparing the significant difference in cumulative energy values during yielding of annealed and low-temperature tempered specimens. Dislocations emit from Frank–Read or grain boundary sources and slip along short free paths, contributing to the initial increase in AE signals energy. Subsequently, the primary source of acoustic emission energy “arch-shaped” peak during yielding was generated by the avalanche behavior of accumulated dislocations, leading to the accelerated dislocation motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Liu, J. Zhang, S. Qin, X. Zuo, N. Chen, F. Gao, Y. Rong, Heat Treat. Surf. Eng. 1 (2019) 23–31.

    Google Scholar 

  2. X.W. Zuo, N.L. Chen, Y.H. Rong, Advanced High Strength Steel and Press Hardening (2016) 379–388.

  3. M. Linderov, C. Segel, A. Weidner, H. Biermann, A. Vinogradov, Mater. Sci. Eng. A 597 (2014) 183–193.

    Article  Google Scholar 

  4. S.M.C. van Bohemen, J. Sietsma, M.J.M. Hermans, I.M. Richardson, Acta Mater. 51 (2003) 4183–4196.

    Article  Google Scholar 

  5. L. Yang, Y.C. Zhou, C. Lu, Acta Mater. 59 (2011) 6519–6529.

    Article  Google Scholar 

  6. S. De Santis, A.K. Tomor, NDT E Int. 55 (2013) 64–74.

    Article  Google Scholar 

  7. A. Vinogradov, D. Orlov, A. Danyuk, Y. Estrin, Acta Mater. 61 (2013) 2044–2056.

    Article  Google Scholar 

  8. A. Vinogradov, A. Lazarev, M. Linderov, A. Weidner, H. Biermann, Acta Mater. 61 (2013) 2434–2449.

    Article  Google Scholar 

  9. J. Yang, C. Zhang, H. Li, Y. **a, Z. Yang, B. Pang, H. Wang, G. Sun, Mater. Today Commun. 33 (2022) 104239.

    Article  Google Scholar 

  10. G. Krauss, Metall. Mater. Trans. A 32 (2001) 861–877.

    Article  Google Scholar 

  11. Y. Chen, B. Gou, W. Fu, C. Chen, X. Ding, J. Sun, E.K.H. Salje, Appl. Phys. Lett. 117 (2020) 262901.

    Article  Google Scholar 

  12. M. Shaira, N. Godin, P. Guy, L. Vanel, J. Courbon, Mater. Sci. Eng. A 492 (2008) 392–399.

    Article  Google Scholar 

  13. N. Kiesewetter, P. Schiller, Phys. Stat. Sol. 38 (1976) 569–576.

    Article  Google Scholar 

  14. C. Scruby, H. Wadley, J.E. Sinclair, Philos. Mag. A 44 (1981) 249–274.

    Article  Google Scholar 

  15. Z. Han, H. Luo, H. Wang, Mater. Sci. Eng. A 528 (2011) 4372–4380.

    Article  Google Scholar 

  16. C.R. Heiple, S.H. Carpenter, R.L. Thomas, Journal of Acoustic Emission 6 (1987) DE87012300.

  17. M. Mirabile, Non Destr. Test. 8 (1975) 77–84.

    Article  Google Scholar 

  18. K. Kuribayashi, T. Kishi, Mater. Sci. Eng. 33 (1978) 159–163.

    Article  Google Scholar 

  19. V.S. Boǐko, V.F. Kivshik, L.F. Krivenko, Sov Phys JEPT. 51 (1980) 401–403.

    Google Scholar 

  20. L. Morsdorf, A. Kashiwar, C. Kübel, C.C. Tasan, Mater. Sci. Eng. A 862 (2023) 144369.

    Article  Google Scholar 

  21. C.R. Heiple, S.H. Carpenter, M.J. Carr, Met. Sci. 15 (1981) 587–598.

    Article  Google Scholar 

  22. M. Saeglitz, G. Krauss, Metall. Mater. Trans. A 28 (1997) 377–387.

    Article  Google Scholar 

  23. E. Pomponi, A. Vinogradov, A. Danyuk, Signal Process. 115 (2015) 110–119.

    Article  Google Scholar 

  24. I. Lyasota, B. Kozub, J. Gawlik, Arch. Civ. Mech. Eng. 19 (2019) 274–285.

    Article  Google Scholar 

  25. Y. Chen, X. Ding, D. Fang, J. Sun, E.K.H. Salje, Sci. Rep. 9 (2019) 1330.

    Article  Google Scholar 

  26. M. Deutges, H.P. Barth, Y. Chen, C. Borchers, R. Kirchheim, Acta Mater. 82 (2015) 266–274.

    Article  Google Scholar 

  27. Y.Z. Chen, H.P. Barth, M. Deutges, C. Borchers, F. Liu, R. Kirchheim, Scripta Mater. 68 (2013) 743–746.

    Article  Google Scholar 

  28. N. Godin, S. Huguet, R. Gaertner, L. Salmon, NDT E Int. 37 (2004) 253–264.

    Article  Google Scholar 

  29. T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, A.Y. Wu, IEEE Trans. Pattern Anal. Mach. Intell. 24 (2002) 881–892.

    Article  Google Scholar 

  30. M. Ercolino, A. Farhidzadeh, S. Salamone, G. Magliulo, Struct. Monit. Maint. 2 (2015) 339–355.

    Google Scholar 

  31. D.L. Davies, D.W. Bouldin, IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-1 (1979) 224–227.

  32. O. Stankevych, V. Skalsky, Eng. Fract. Mech. 164 (2016) 24–34.

    Article  Google Scholar 

  33. M. Newman, Contemp. Phys. 46 (2005) 323–351.

    Article  Google Scholar 

  34. L.I. Salminen, A.I. Tolvanen, M.J. Alava, Phys. Rev. Lett. 89 (2002) 185503.

    Article  Google Scholar 

  35. A. Clauset, C.R. Shalizi, M.E.J. Newman, SIAM Rev. 51 (2009) 661–703.

    Article  MathSciNet  Google Scholar 

  36. W. Ma, H. Luo, Z. Han, L. Zhang, X. Yang, Materials 13 (2020) 4981.

    Article  Google Scholar 

  37. Y. Deng, Y. Liu, D.M. Feng, J. Cent. South Univ. 21 (2014) 3692–3697.

    Article  Google Scholar 

  38. P. Zhao, Y. Sun, J. Jiao, G. Fang, Eng. Fract. Mech. 230 (2020) 106967.

    Article  Google Scholar 

  39. D. Drozdenko, J. Čapek, B. Clausen, A. Vinogradov, K. Máthis, J. Alloy. Compd. 786 (2019) 779–790.

    Article  Google Scholar 

  40. V. Moorthy, T. Jayakumar, B. Raj, Int. J. Press. Vessels Pip. 64 (1995) 161–168.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (Grant Nos. 51771114 and 51371117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun-wei Zuo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, Jz., Zeng, Ly. et al. Revealing dislocation activity modes during yielding and uniform deformation of low-temperature tempered steel by acoustic emission. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-024-01253-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-024-01253-y

Keywords

Navigation