Log in

A high-efficiency separation process of Fe and Zn from zinc-bearing dust by direct reduction

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

It is urgent to dispose of zinc-bearing dust from steel plants, and direct reduction process is an effective method to remove hazardous metals and recycle iron from the dust. The reduction behavior of carbon-containing pellets which were made from three kinds of zinc-bearing dust was investigated. When the pellets were reduced at 1200 °C for 50 min, the reduced pellets with cold compressive strength of 1164 N pellet−1 and Zn content < 0.1 wt.% could be directly used as burden for improving the blast furnace operation without further agglomeration. The results of isothermal kinetic study showed that the iron oxide reduction rate was controlled by the chemical reactions. The strengthening mechanism of reduced pellets and iron oxide reduction mechanism was investigated by thermodynamic calculation besides X-ray diffraction, scanning electron microscopy combined with energy dispersive spectrometry, and optical microscopy analyses. It was found that higher temperatures are required for the reduction of spinel phase (zinc ferrite) and olivine phase (hedenbergite). The generation and growth of metallic iron bridges could significantly increase the compressive strength of reduced pellets. The iron oxide reduction in the carbon-containing pellets followed the uniform internal reduction model and possessed a high apparent reaction rate, which can improve energy utilization rate and production efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Sikalidis, M. Mitrakas, R. Tsitouridou, Global Nest J. 12 (2010) 368–373.

    Google Scholar 

  2. R. Chairaksa-Fujimoto, Y. Inoue, N. Umeda, S. Itoh, T. Nagasaka, Int. J. Miner. Metall. Mater. 22 (2015) 788–797.

    Article  Google Scholar 

  3. X.W. An, J.S. Wang, X.F. She, Q.G. Xue, Int. J. Miner. Metall. Mater. 20 (2013) 627–635.

    Article  Google Scholar 

  4. X.L. Lin, Z.W. Peng, J.X. Yan, Z.Z. Li, J.Y. Hwang, Y.B. Zhang, G.H. Li, T. Jiang, J. Clean. Prod. 149 (2017) 1079–1100.

    Article  Google Scholar 

  5. A. Andersson, A. Gullberg, A. Kullerstedt, H. Ahmed, L. Sundqvist-Ökvist, C. Samuelsson, J. Sustain. Metall. 5 (2019) 350–361.

    Article  Google Scholar 

  6. Z. Youcai, R. Stanforth, J. Hazard. Mater. 80 (2000) 223–240.

    Article  Google Scholar 

  7. P. Halli, J. Hamuyuni, H. Revitzer, M. Lundström, J. Clean. Prod. 164 (2017) 265–276.

    Article  Google Scholar 

  8. H.G. Wang, Y. Li, J.M. Gao, M. Zhang, M. Guo, Int. J. Miner. Metall. Mater. 23 (2016) 146–155.

    Article  Google Scholar 

  9. M. Al-harahsheh, S. Kingman, L. Al-Makhadmah, I.E. Hamilton, J. Hazard. Mater. 274 (2014) 87–97.

    Article  Google Scholar 

  10. L.G. **a, R. Mao, J.L. Zhang, X.N. Xu, M.F. Wei, F.H. Yang, Int. J. Miner. Metall. Mater. 22 (2015) 122–131.

    Article  Google Scholar 

  11. J.T. Ju, Y.J. Dang, Mater. Rep. 28 (2014) No. 9, 109–113.

    Google Scholar 

  12. X.F. She, J.S. Wang, G. Wang, Q.G. Xue, X.X. Zhang, J. Iron Steel Res. Int. 21 (2014) 488–495.

    Article  Google Scholar 

  13. C.C. Wu, F.C. Chang, W.S. Chen, M.S. Tsai, Y.N. Wang, J. Environ. Manage. 143 (2014) 208–213.

    Article  Google Scholar 

  14. E. Junca, T.A.G. Restivo, J.R. de Oliveira, D.C.R. Espinosa, J.A.S. Tenório, J. Therm. Anal. Calorim. 126 (2016) 1889–1897.

    Article  Google Scholar 

  15. E. Junca, J.R. de Oliveira, T.A.G. Restivo, D.C.R. Espinosa, J.A.S. Tenório, J. Therm. Anal. Calorim. 123 (2016) 631–641.

    Article  Google Scholar 

  16. D.Q. Zhu, D.Z. Wang, J. Pan, H.Y. Tian, Y.X. Xue, Powder Technol. 380 (2021) 273–281.

    Article  Google Scholar 

  17. J. Peng, B. Peng, D. Yu, M.T. Tang, J. Lobel, J.A. Kozinski, Trans. Nonferrous Met. Soc. China 14 (2004) 392–396.

    Google Scholar 

  18. D.Y. Wang, J.L. Zhang, S.L. Wu, Baosteel Technol. Res. 7 (2013) No. 3, 46–49.

    Google Scholar 

  19. D.Y. Wang, W.Q. Che, R.Z. Zhou, W.Z. Wang, J. Iron Steel Res. Int. 6 (1999) No. 1, 12–18.

    Google Scholar 

  20. J. Peng, B. Peng, D. Yu, M.T. Tang, H.C. Song, J. Lobel, J.A. Kozinski, Trans. Nonferrous Met. Soc. China 14 (2004) 593–598.

    Google Scholar 

  21. Y.L. Wu, Z.Y. Jiang, X.X. Zhang, P. Wang, X.F. She, Int. J. Miner. Metall. Mater. 20 (2013) 636–644.

    Article  Google Scholar 

  22. Z.D. Tang, Q. Zhang, Y.S. Sun, P. Gao, Y.X. Han, Resour. Conserv. Recycl. 172 (2021) 105680.

  23. O.A. Mohamed, M.E.H. Shalabi, N.A. El-Hussiny, M.H. Khedr, F. Mostafa, Powder Technol. 130 (2003) 277–282.

    Article  Google Scholar 

  24. S.C. Panigrahy, P. Verstraeten, J. Dilewijns, Metall. Trans. B 15 (1984) 23–32.

    Article  Google Scholar 

  25. Y. Man, J.X. Feng, F.J. Li, Q. Ge, Y.M. Chen, J.Z. Zhou, Powder Technol. 256 (2014) 361–366.

    Article  Google Scholar 

  26. M. Omran, T. Fabritius, Sep. Purif. Technol. 210 (2019) 867–884.

    Article  Google Scholar 

  27. D. Mombelli, S. Barella, A. Gruttadauria, C. Mapelli, Appl. Sci. 9 (2019) 4902.

    Article  Google Scholar 

  28. D. Mombelli, C. Mapelli, S. Barella, A. Gruttadauria, E. Spada, J. Environ. Chem. Eng. 7 (2019) 102966.

  29. D.J.C. Stewart, D. Thomson, A.R. Barron, Resour. Conserv. Recycl. 170 (2021) 105592.

  30. Y.G. Ding, J.S. Wang, X.F. She, G. Wang, Q.G. Xue, J. Iron Steel Res. Int. 20 (2013) No. 5, 28–33.

    Article  Google Scholar 

  31. M. Kumar, S. Nath, S.K. Patel, Miner. Process. Ext. Met. Rev. 31 (2010) 256–268.

    Article  Google Scholar 

  32. Z.Q. Guo, J. Pan, D.Q. Zhu, C.C. Yang, Powder Technol. 329 (2018) 55–64.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the National Natural Science Foundation of China (No. 51904347), which supplied us with the facilities and funds needed to complete the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-qing Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Dz., Zhu, Dq., Pan, J. et al. A high-efficiency separation process of Fe and Zn from zinc-bearing dust by direct reduction. J. Iron Steel Res. Int. 29, 1559–1572 (2022). https://doi.org/10.1007/s42243-021-00722-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00722-y

Keywords

Navigation