Log in

Twinning induced remarkable strain hardening in a novel Fe50Mn20Cr20Ni10 medium entropy alloy

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The microstructures and tension properties of Fe50Mn20Cr20Ni10 medium entropy alloy (MEA) were investigated, which was produced by vacuum induction melting and subsequently was homogenized at 1200 °C for 6 h. Microstructure characterization shows the single-phase solid solution with face-centered cubic structure by means of transmission electron microscopy and scanning electron microscopy combined with energy disperse spectroscopy. Our Fe-MEA has an ultimate tensile strength of 550 ± 10 MPa and a high strain hardening exponent, n, of 0.41 as well as a higher ductility (60%) than those of CrMnFeCoNi alloy. The single-phase solid solution deforms plastically via dislocations and twins. Twin boundaries associated with deformation twinning impede dislocation motion, enhancing the strain hardening capacity. This article focuses on the insights into the concept of Fe-MEAs and provides a potential direction for the future development of high entropy alloys and MEAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299–303.

    Article  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375–377 (2004) 213–218.

    Article  Google Scholar 

  3. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1–93.

    Article  Google Scholar 

  4. Y. Ye, Q. Wang, J. Lu, C. Liu, Y. Yang, Mater. Today 19 (2016) 349–362.

    Article  Google Scholar 

  5. M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2 (2014) 107–123.

    Article  Google Scholar 

  6. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227–230.

    Article  Google Scholar 

  7. O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Intermetallics 19 (2011) 698–706.

    Article  Google Scholar 

  8. Z.Y. Ding, Q.F. He, Q. Wang, Y. Yang, Int. J. Plasticity 106 (2018) 57–72.

    Article  Google Scholar 

  9. K.S. Ming, X.F. Bi, J. Wang, Int. J. Plasticity 100 (2018) 177–191.

    Article  Google Scholar 

  10. C.C. Tasan, Y. Deng, K.G. Pradeep, M.J. Yao, H. Springer, D. Raabe, JOM 66 (2014) 1993–2001.

    Article  Google Scholar 

  11. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153–1158.

    Article  Google Scholar 

  12. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61 (2013) 5743–5755.

    Article  Google Scholar 

  13. A. Saeed-Akbari, L. Mosecker, A. Schwedt, W. Bleck, Metall. Mater. Trans. A 43 (2012) 1688–1704.

    Article  Google Scholar 

  14. S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Mater. Sci. Eng. A 387–389 (2004) 158–162.

    Article  Google Scholar 

  15. V. Shterner, I.B. Timokhina, H. Beladi, Mater. Sci. Eng. A 669 (2016) 437–446.

    Article  Google Scholar 

  16. S. Curtze, V.T. Kuokkala, Acta Mater. 58 (2010) 5129–5141.

    Article  Google Scholar 

  17. A.J. Zaddach, C. Niu, C.C. Koch, D.L. Irving, JOM 65 (2013) 1780–1789.

    Article  Google Scholar 

  18. K.H. Lo, C.H. Shek, J.K.L. Lai, Mater. Sci. Eng. R Rep. 65 (2009) 39–104.

    Article  Google Scholar 

  19. B.B. Bian, N. Guo, H.J. Yang, R.P. Guo, L. Yang, Y.C. Wu, J.W. Qiao, J. Alloy. Compd. 827 (2020) 153981.

    Article  Google Scholar 

  20. O. Dmitrieva, D. Ponge, G. Lnden, J. Millán, P. Choi, J. Sietsma, D. Raabe, Acta Mater. 59 (2011) 364–374.

    Article  Google Scholar 

  21. D. Raabe, S. Sandlöbes, J. Millán, D. Ponge, H. Assadi, M. Herbig, P.P. Choi, Acta Mater. 61 (2013) 6132–6152.

    Article  Google Scholar 

  22. M. Kuzmina, D. Ponge, D. Raabe, Acta Mater. 86 (2015) 182–192.

    Article  Google Scholar 

  23. M.J. Yao, K.G. Pradeep, C.C. Tasan, D. Raabe, Scripta Mater. 72–73 (2014) 5–8.

    Article  Google Scholar 

  24. Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, D. Raabe, Acta Mater. 94 (2015) 124–133.

    Article  Google Scholar 

  25. Z.M. Li, F. Körmann, B. Grabowski, J. Neugebauer, D. Raabe, Acta Mater. 136 (2017) 262–270.

    Article  Google Scholar 

  26. Z.M. Li, C.C. Tasan, H. Springer, B. Gault, D. Raabe, Sci. Rep. 7 (2017) 40704.

    Article  Google Scholar 

  27. Z.G. Wu, Y.F. Gao, H.B. Bei, Acta Mater. 120 (2016) 108–119.

    Article  Google Scholar 

  28. T.H. Courney, in: Mechanical Behavior of Materials, 2nd ed., McGraw-Hill, New York, USA, 2000.

    Google Scholar 

  29. X.L. Wu, M.X. Yang, F.P. Yuan, L. Chen, Y.T. Zhu, Acta Mater. 112 (2016) 337–346.

    Article  Google Scholar 

  30. M.M. Wang, C.C. Tasan, D. Ponge, D. Raabe, Acta Mater. 111 (2016) 262–272.

    Article  Google Scholar 

  31. Z.C. Li, R.D.K. Misra, Z.H. Cai, H.X. Li, H. Ding, Mater. Sci. Eng. A 673 (2016) 63–72.

    Article  Google Scholar 

  32. E.W. Hart, Acta Metall. 15 (1967) 351–355.

    Article  Google Scholar 

  33. Q. Wei, S. Cheng, K.T. Ramesh, E. Ma, Mater. Sci. Eng. A 381 (2004) 71–79.

    Article  Google Scholar 

  34. X. Yang, Y. Zhang, Mater. Chem. Phys. 132 (2012) 233–238.

    Article  Google Scholar 

  35. R.T. Chen, G. Qin, H.T. Zheng, L. Wang, Y.Q. Su, Y.L. Chiu, H.S. Ding, J.J. Guo, H.Z. Fu, Acta Mater. 144 (2018) 129–137.

    Article  Google Scholar 

  36. R. Labusch, Phys. Status Solidi 41 (1970) 659–669.

    Article  Google Scholar 

  37. I. Toda-Caraballo, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 85 (2015) 14–23.

    Article  Google Scholar 

  38. O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, J. Alloy. Compd. 509 (2011) 6043–6048.

    Article  Google Scholar 

  39. G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, O.N. Senkov, J. Alloy. Compd. 591 (2014) 11–21.

    Article  Google Scholar 

  40. L.A. Gypen, A. Deryuttere, J. Mater. Sci. 12 (1977) 1028–1033.

    Article  Google Scholar 

  41. N.D. Stepanov, D.G. Shaysultanov, M.A. Tikhonovsky, G.A. Salishchev, Mater. Des. 87 (2015) 60–65.

    Article  Google Scholar 

  42. Y. Ma, Q. Wang, C. Li, L.J. Santodonato, M. Feygenson, C. Dong, P.K. Liaw, Scripta Mater. 144 (2018) 64–68.

    Article  Google Scholar 

  43. R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R.O. Ritchie, A.M. Minor, Nature 581 (2020) 283–287.

    Article  Google Scholar 

  44. J.K. Kim, B.C. De Cooman, Mater. Sci. Eng. A 676 (2016) 216–231.

    Article  Google Scholar 

  45. W. Püschl, Prog. Mater. Sci. 47 (2002) 415–461.

    Article  Google Scholar 

  46. G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Acta Mater. 118 (2016) 152–163.

    Article  Google Scholar 

  47. N.L. Okamoto, S. Fujimoto, Y. Kambara, M. Kawamura, Z.M.T. Chen, H. Matsunoshita, K. Tanaka, H. Inui, E.P. George, Sci. Rep. 6 (2016) 35863.

    Article  Google Scholar 

  48. O. Bouaziz, S. Allain, C. Scott, Scripta Mater. 58 (2008) 484–487.

    Article  Google Scholar 

  49. H. Idrissi, K. Renard, D. Schryvers, P.J. Jacques, Scripta Mater. 63 (2010) 961–964.

    Article  Google Scholar 

  50. Z. Yang, M. Yang, Y. Ma, L. Zhou, W. Cheng, F. Yuan, X. Wu, Mater. Sci. Eng. A 793 (2020) 139854.

    Article  Google Scholar 

  51. Y. Ma, F. Yuan, M. Yang, P. Jiang, E. Ma, X. Wu, Acta Mater. 148 (2018) 407–418.

    Article  Google Scholar 

  52. Z. Li, S. Zhao, S.M. Alotaibi, Y. Liu, B. Wang, M.A. Meyers, Acta Mater. 151 (2018) 424–431.

    Article  Google Scholar 

  53. Z. Li, S. Zhao, H. Diao, P.K. Liaw, M.A. Meyers, Sci. Rep. 7 (2017) 42742.

    Article  Google Scholar 

  54. J.W. Bae, H.S. Kim, Scripta Mater. 186 (2020) 169–173.

    Article  Google Scholar 

  55. J.W. Bae, J.B. Seol, J. Moon, S.S. Sohn, M.J. Jang, H.Y. Um, B.J. Lee, H.S. Kim, Acta Mater. 161 (2018) 388–399.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the Natural Science Foundation of Shanxi Province, China (Nos. 201901D111105 and 201901D111114), Transformation of Scientific and Technological Achievements Programs of Higher Education Institutions in Shanxi (2019), State Key Lab of Advanced Metals and Materials of China (Grant No. 2020-Z09), and the opening project of the State Key Laboratory of Explosion Science and Technology (Bei**g Institute of Technology), and the opening project number is KFJJ20-13M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-wei Qiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Mj., **, X., Zhang, M. et al. Twinning induced remarkable strain hardening in a novel Fe50Mn20Cr20Ni10 medium entropy alloy. J. Iron Steel Res. Int. 28, 1463–1470 (2021). https://doi.org/10.1007/s42243-021-00585-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00585-3

Keywords

Navigation